
B L A C K W O O D D E S I G N S

Quality Software
Design

SOFTWARE DESIGN GUIDES

A U T H O R R A N D A L L M A A S

O V E R V I E W This guide describes the design of high-quality software for embedded systems. The intent is to

promote well-founded, justified designs and confidence in their operation. It provides guides,

checklists and templates.

B E N E F I T S Improve the quality of source code: its maintainability, testability, etc.

Prevent potential defects

Smoother, shorter design / release cycles

Better software products

T E M P L A T E S Design documentation templates

Design review checklists

Software Risk Analysis Templates

Bug reporting template

Coding Style guides for C and C++

Bug defect type classification

Code review checklists

Code quality rubric

Copyright © 2003-2025 Blackwood
Designs, LLC. All rights reserved. No
part of this document may be
reproduced or transmitted in any form
or by any means, electronic or
mechanical, including photocopying
and recording, for any purpose,
without the express written permission
of Blackwood Designs.

F I L E : \\nas.local\Files\Documents\BD4 SW Design Documents\build quality software

guide\BD4 Quality Software Guide.doc

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 ii

RANDALL MAAS has spent decades in Washington and Minnesota. He consults in embedded

systems development, especially medical devices. Before that he did a lot of other things…

like everyone else in the software industry. He is also interested in geophysical models,

formal semantics, model theory and compilers.

You can contact him at randym@randym.name.

LinkedIn: http://www.linkedin.com/pub/randall-maas/9/838/8b1

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 iii

PREFACE .. 1

SPECIFICATIONS ... 3

OVERVIEW OF SOFTWARE DESIGN QUALITY .. 5

PROCESS .. 9

REQUIREMENTS CHECKLISTS .. 21

SOFTWARE RISK ANALYSIS ... 25

SOFTWARE DESIGN & DOCUMENTATION ... 31

DESIGN OVERVIEW & WRITING TIPS .. 33

HIGH-LEVEL DESIGN TEMPLATE .. 39

SOFTWARE ARCHITECTURE RISK ANALYSIS .. 45

DETAILED DESIGN .. 49

COMMUNICATION PROTOCOL TEMPLATE .. 67

PROGRAMMER DOCUMENTATION .. 75

SOFTWARE MODULE DOCUMENTATION TEMPLATE ... 79

DESIGN REVIEW CHECKLISTS .. 89

SOFTWARE DETAILED DESIGN RISK ANALYSIS .. 97

SOURCE CODE CRAFTSMANSHIP .. 101

OVERVIEW OF SOURCE CODE WORKMANSHIP ... 103

C/C++ CODING STYLE ... 105

CODE INSPECTIONS AND REVIEWS ... 133

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 iv

CODE INSPECTION & REVIEWS CHECKLISTS .. 137

APPENDICES... 147

ABBREVIATIONS, ACRONYMS, GLOSSARY .. 149

PRODUCT STANDARDS ... 155

FLOATING-POINT PRECISION .. 158

BUG REPORT TEMPLATE .. 159

TYPES OF DEFECTS ... 165

CODE-COMPLETE REQUIREMENTS REVIEW CHECKLISTS ... 172

CODE-COMPLETE DESIGN REVIEW CHECKLISTS .. 174

DESIGN REVIEW RUBRIC .. 184

CODE-COMPLETE CODE REVIEW CHECKLISTS .. 188

CODE REVIEW RUBRIC.. 205

ARM CORTEX-M SPECIFICS ... 211

HARDWARE FIRMWARE INTEGRATION TESTS .. 216

REFERENCES & RESOURCES .. 223

FIGURE 1: THE HIERARCHY OF SYSTEMS & SUBSYSTEMS ... 5
FIGURE 2: LEVELS OF ABSTRACTION IN DEVELOPMENT PROCESS ... 6
FIGURE 3: LEVELS OF ABSTRACTION IN DEVELOPMENT PROCESS ... 10
FIGURE 4: WHERE KEY FUNCTIONS & REQUIREMENTS ARE IDENTIFIED IN THE PROCESS .. 14
FIGURE 5: STRUCTURE OF A BROAD DESIGN WITH MODERATE FAN OUT .. 35
FIGURE 6: STRUCTURE OF A MID-SIZE DESIGN, WITH HIGH FAN OUT .. 35
FIGURE 7: BASIC FLOW STRUCTURE OF THE SOFTWARE .. 40
FIGURE 8: PROCESSOR WITH A SUPERVISOR PROCESSOR ... 41
FIGURE 9: MAJOR FUNCTIONALITY GROUPS .. 42
FIGURE 10: BASIC STRUCTURE DIAGRAM OF THE SOFTWARE ... 50
FIGURE 11: BASIC STRATIFIED DIAGRAM OF THE SOFTWARE MODULES ... 52
FIGURE 12: BASIC SEPARATION INTO THREADS. ... 53
FIGURE 13: SEPARATION INTO THREADS & INTERRUPTS TO DRIVE HARDWARE ... 53
FIGURE 14: BASIC THREAD STRUCTURE .. 54

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 v

FIGURE 15: TYPICAL INSTRUMENTATION STRUCTURAL DIAGRAM .. 54
FIGURE 16: TYPICAL INSTRUMENTATION LOOP .. 55
FIGURE 17: DMA DRIVEN LINEAR INPUT AND OUTPUT .. 56
FIGURE 18: TYPICAL COMMUNICATION STACK ... 57
FIGURE 19: DMA DRIVEN COMMUNICATION .. 57
FIGURE 20: TYPICAL STORAGE STACK ... 58
FIGURE 21: DMA DRIVEN STORAGE ... 59
FIGURE 22: TYPICAL FIELD-ORIENTED CONTROL OF MOTOR SPEED .. 59
FIGURE 23: SEGMENTATION OF MEMORY WITH CANARIES .. 61
FIGURE 24: OVERVIEW OF BUFFERS WITH CANARIES ... 61
FIGURE 25: OVERVIEW OF THE STACK STRUCTURE WITH CANARIES ... 62
FIGURE 26: UNIT AND SUBSYSTEM TEST CONFIGURATION ... 63
FIGURE 27: WHITE BOX TEST STATION CONFIGURATION ... 64
FIGURE 28: SEQUENCE FOR READING PORTION OF THE XYZ DATA .. 68
FIGURE 29: THE XYZ DATA RETRIEVAL ALGORITHM .. 69
FIGURE 30: LOGICAL OVERVIEW OF THE COMMUNICATION STACK OVERVIEW ... 70
FIGURE 31: THE FORMAT OF THE COMMAND/QUERY AND RESPONSE MESSAGES.. 71
FIGURE 32: READ COMMAND SEQUENCE ON SUCCESS ... 73
FIGURE 33: READ COMMAND WITH ERROR RESPONSE ... 73
FIGURE 34: THE CONFIGURATION OF THE PRODUCTION FIRMWARE .. 76
FIGURE 35: HOW .H AND .C FILES RELATED TO A MODULE .. 78
FIGURE 36: OVERVIEW OF THE FOO MODULE .. 80
FIGURE 37: DETAILED MODULE ORGANIZATION ... 85
FIGURE 38: HOW .H AND .C FILES RELATED TO A MODULE .. 108
FIGURE 39: OVERVIEW OF BUFFERS WITH CANARIES ... 120
FIGURE 40: TYPICAL PROCEDURE TEMPLATE .. 122
FIGURE 41: PRIORITIZED INTERRUPTS AND EXCEPTIONS ... 214

TABLE 1: ISO/IEC 25010 MODEL OF SOFTWARE QUALITY ... 6
TABLE 2: MCCALL MODEL OF SOFTWARE QUALITY .. 6
TABLE 3: INPUTS FOR EACH KIND OF RISK ANALYSIS ... 17
TABLE 4: VALUE ACCURACY RISKS ... 26
TABLE 5: HAZARD PROBABILITY LEVELS BASED ON MIL-STD 882 ... 26
TABLE 6: AN EXAMPLE RISK ACCEPTABILITY MATRIX DETERMINING RISK ACCEPTABILITY .. 26
TABLE 7: MESSAGE CAPACITY RISKS .. 27
TABLE 8: TIMING CAPACITY RISKS ... 27
TABLE 9: SOFTWARE FUNCTION RISKS .. 28
TABLE 10: SOFTWARE ROBUSTNESS RISKS .. 28
TABLE 11: SOFTWARE CRITICAL SECTIONS RISKS ... 29
TABLE 12: UNAUTHORIZED USE RISKS .. 29
TABLE 13: THE SOFTWARE DESIGN ELEMENTS ... 41
TABLE 14: THE EXTERNAL ELEMENTS ... 41
TABLE 15: THE FUNCTIONALITY GROUPS .. 42
TABLE 16: TIMING CAPACITY RISKS ... 46
TABLE 17: SOFTWARE FUNCTION RISKS .. 47
TABLE 18: THE STRUCTURAL DIAGRAM ELEMENTS .. 50
TABLE 19: THE EXTERNAL ELEMENTS ... 50
TABLE 20: SUMMARY OF THE READ DATA COMMAND .. 72
TABLE 21: PARAMETERS FOR READ COMMAND ... 72
TABLE 22: PARAMETERS FOR READ RESPONSE .. 72
TABLE 23: SUMMARY OF C MODULE PREFIXES ... 76
TABLE 24: TOP-LEVEL FOLDERS IN THE PROJECT FILE DIRECTORY .. 77
TABLE 25: SOURCE CODE FOLDERS IN THE PROJECT FILE DIRECTORY .. 77
TABLE 26: FOO STRUCTURES .. 82
TABLE 27: FOO _T STRUCTURE .. 82
TABLE 28: FOO VARIABLES ... 82
TABLE 29: MODULE CLASSES .. 83
TABLE 30: FOO CLASS STRUCTURE .. 83

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 vi

TABLE 31: FOO METHODS .. 83
TABLE 32: FOO INTERFACE PROCEDURES .. 84
TABLE 33: MODULE FILES... 86
TABLE 34: CONFIGURATION OF THE FOO MODULE ... 87
TABLE 35: SOFTWARE FUNCTION RISKS .. 98
TABLE 36: SUFFIXES FOR CONFIGURATION MACROS AND VARIABLES .. 108
TABLE 37: THE PREFERRED TYPES FOR QUANTITY, BY DIMENSION ... 118
TABLE 38: THE PREFERRED INTEGER TYPE FOR A GIVEN SIZE .. 118
TABLE 39: COMMON ACRONYMS AND ABBREVIATIONS .. 149
TABLE 40: GLOSSARY OF COMMON TERMS AND PHRASES ... 150
TABLE 41: SAFETY STANDARDS AND WHERE THEY ADAPT FROM ... 157
TABLE 42: FLOAT RANGE .. 158
TABLE 43: ACCURACY OF INTEGER VALUES REPRESENTED AS A FLOAT .. 158
TABLE 44: READABILITY RUBRIC ... 184
TABLE 45: DOCUMENTATION ORGANIZATION AND CLARITY RUBRIC .. 185
TABLE 46: IMPLEMENTATION RUBRIC .. 186
TABLE 47: READABILITY RUBRIC ... 205
TABLE 48: COMMENTS AND DOCUMENTATION RUBRIC .. 206
TABLE 49: IMPLEMENTATION RUBRIC .. 207
TABLE 50: ERROR HANDLING RUBRIC .. 210
TABLE 51: BEHAVIOUR RUBRIC .. 210

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 1

Preface

This guide aims to provide relevant tools to support creating quality software. It tries to do so

in a manner that the reader may apply to their projects. Why create such a thing? As a

consultant who has seen many client development organizations, I’ve found that few have the

material that I present here. None has any guidelines on good software designs, design

reviews and hazard analysis of software. Many lack coding style guide, code review

guidance, and bug reporting standards. If they do have code guidelines, it is sparse and could

do so much more to improve quality.

This is a guide will only cover the quality of software design and the workmanship of source

code. It does not cover:

 Writing software requirements

 Testing of the software

 Debugging the software

 Project and development management

 Planning, scheduling or budgeting

1. ORGANIZATION OF THIS DOCUMENT
This guide is written in 3 parts, with the broadest up front, and the most specific or esoteric

toward the rear.

 CHAPTER 1: PREFACE. This chapter describes the other chapters.

PART I: SPECIFICATIONS.

 CHAPTER 2: OVERVIEW OF SOFTWARE DESIGN QUALITY. Introduces what is meant by

quality.

 CHAPTER 3: PROCESS.

 CHAPTER 4: REQUIREMENTS CHECKLISTS. This chapter provides checklists for reviewing

requirements.

 CHAPTER 5: SOFTWARE RISK ANALYSIS.

PART II: SOFTWARE DESIGN & DOCUMENTATION. This part provides guides for software

design and its documentation

 CHAPTER 6: DESIGN OVERVIEW & WRITING TIPS.

 CHAPTER 7: GUIDELINES FOR HIGH-LEVEL DESIGNS (e.g. architectures).

 CHAPTER 8: SOFTWARE ARCHITECTURE RISK ANALYSIS.

 CHAPTER 9: GUIDELINES FOR DETAILED DESIGNS (e.g. major subsystems or “stacks”).

 CHAPTER 10: PROTOCOL DOCUMENTATION TEMPLATE.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 2

 CHAPTER 11: PROGRAMMER DOCUMENTATION. The software documentation primarily for

software developers, often created with doxygen, docfx, and markdown.

 CHAPTER 12: SOFTWARE MODULE DOCUMENTATION TEMPLATE. Provides a guide for

detailed design documentation of a module.

 CHAPTER 12: GUIDELINES FOR MODULE DESIGNS. Provides guidelines for low-level

module designs.

 CHAPTER 13: DESIGN REVIEWS CHECKLISTS. Provides checklists for reviewing a design.

 CHAPTER 14: SOFTWARE DETAILED DESIGN RISK ANALYSIS. Describes reviewing

software for hazard analysis.

PART III: SOURCE CODE CRAFTSMANSHIP. This part provides source code workmanship guides

 CHAPTER 15: OVERVIEW OF SOURCE CODE WORKMANSHIP.

 CHAPTER 16: C/C++ CODING STYLE for C & C++ source code.

 CHAPTER 17: CODE INSPECTION & REVIEWS. Describes code reviews.

 CHAPTER 18: CODE INSPECTION & REVIEWS CHECKLISTS. Provides checklists for

reviewing source code.

APPENDICES: The appendices provide extra material

 APPENDIX A: ABBREVIATIONS, ACRONYMS, & GLOSSARY. This appendix provides a gloss

of terms, abbreviations, and acronyms.

 APPENDIX B: PRODUCT STANDARDS. This appendix provides supplemental information

on standards and how product standards are organized

 APPENDIX C: FLOATING POINT PRECISION. This appendix recaps the limits of floating-

point precision.

 APPENDIX D: BUG REPORTING TEMPLATE. A template (and guidelines) for reporting bugs

 APPENDIX E: TYPES OF DEFECTS. This appendix provides a classification of different

kinds of software defects that are typically encountered.

 APPENDIX F: CODE COMPLETE REQUIREMENTS REVIEW CHECKLISTS. This appendix

reproduces checklists from Code Complete, 2nd Ed relevant to requirements reviews.

 APPENDIX G: CODE COMPLETE DESIGN REVIEW CHECKLISTS. This appendix reproduces

checklists from Code Complete, 2nd Ed that are relevant to design reviews.

 APPENDIX H: DESIGN REVIEW RUBRIC. This appendix provides rubrics relevant in

assessing the design and its documentation.

 APPENDIX I: CODE COMPLETE CODE REVIEW CHECKLISTS. This appendix reproduces

checklists from Code Complete, 2nd Ed that are relevant to code reviews.

 APPENDIX J: SOFTWARE REVIEW RUBRIC. This appendix provides rubrics relevant in

assessing software workmanship.

 APPENDIX K: ARM CORTEX-M SPECIFICS. Technical tips and design information too low-

level for a detailed design document.

 APPENDIX L: HARDWARE-FIRMWARE INTEGRATION TESTS.

REFERENCES AND RESOURCES. This provides further reading and referenced documents.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 3

PART I

Specifications

This first part provides guides for software design and its documentation

 OVERVIEW OF SOFTWARE DESIGN QUALITY. Introduces what is meant by quality.

 PROCESS

 REQUIREMENTS CHECKLISTS. This chapter provides checklists for reviewing

requirements.

SOFTWARE RISK ANALYSIS.

“The project development people seemed to be a special breed of programmers whose incomprehensibility

was matched only by their desire to document in a level of detail that baffled the minds of ordinary folk.”

– NSA Cryptolog, 1979 June

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 4

[This page is intentionally left blank for purposes of double-sided printing]

“The hardest part of the software task is arriving at a complete and consistent specification, and much of

the essence of building a program is in fact the debugging of the specification.”

– Fred Brooks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 5

CHAPTER 2

Overview of Software

Design Quality

This chapter promotes good software quality:

 Software quality overview

 Where do bugs come from?

 How quality software can be achieved

 A tip on staffing

2. OVERVIEW

Software lives as part of a system within a product. Typical embedded software can be

described as fit into a hierarchy of systems and subsystems:

Product

Programmable

System

Mechanical Electronics

Programmable

Component &

Software

There is the “final” product itself, with a portion – sometimes large, sometimes small – that is

the programmable system. This system has mechanical and electronic subsystems, as well as

the programmable component (usually a microcontroller) that is executing the software that

will be discussing through this guidebook.

The diagram below synopsizes the levels of abstraction in the normative software

development process. Guidance documents help the work to be performed be done quickly,

and with appropriate craftsmanship. The tests and reviews help catch errors and improve the

construction of the software.

Figure 1: The

hierarchy of systems &

subsystems

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 6

Detailed

design

Code

Reviews

Design

reviews

Source code

Design

Guidance

Coding Style

Guidelines

High-level

Design

Design

review

Integration

tests

Unit Tests

Specification Review
Verification

tests

Review checklists & rubrics should be a dual (twin) to the coding style. Everything in one

should be in the other.

3. SOFTWARE QUALITY OVERVIEW

It may be helpful to provide a brief overview of what “software quality” is. ISO/IEC 25010

model of software quality is one useful way to organize the areas of quality:

Quality factor Quality Criteria

Functionality Completeness, Correctness, Appropriateness

Performance &
Efficiency

Time behavior, Resource utilization, Capacity

Compatibility Interoperability

Usability Appropriateness, Recognisability, Learnability, Operability, User

error protection, Aesthetics, Accessibility

Reliability Maturity, Availability, Fault tolerance, Recoverability

Security Confidentiality, Integrity, Non-repudiation, Accountability,

Authenticity

Maintainability Analyzability, Modifiability, Modularity, Reusability, Testability

Portability Adaptability, Installability, Replaceability

McCall’s model is another way to organize the areas of quality. It maps each top-level area of

quality to a more specific quality.

Quality factor Quality Criteria

Correctness Traceability, Completeness, Consistency

Reliability Consistency, Accuracy, Error tolerance

Efficiency Execution efficiency, Storage efficiency

Integrity Access control, Access audit

Usability Operability, Training, Communicativeness

Maintainability Simplicity, Conciseness, Self-descriptiveness, Modularity

Testability Simplicity, Instrumentation, Self-descriptiveness, Modularity

Flexibility Simplicity, Expandability, Generality, Modularity

Figure 2: Levels of

abstraction in

development process

Table 1: ISO/IEC

25010 model of

software quality

Table 2: McCall model

of software quality

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 7

Portability Simplicity, Software system independence, Machine independence

Reusability Simplicity, Generality, Modularity, Software system independence,

Machine independence

Interoperability Modularity, Communications commonality, Data commonality

These same metrics apply to the programmable system, and perhaps the product overall.

3.1. WHERE DO BUGS & DEFECTS COME FROM?

Where do the bugs & defects come from?

 The wrong requirements – that the product and programmable system was designed to

the wrong set of rules.

 Operation action and input – inconsistent settings, out of range entries, and so forth.

These indicate insufficient requirements about the constraints on the user interface.

 Poor design – a design is unsound, an algorithm has too high of computational

complexity, bottlenecks & contention for resources, prioritization issues, etc.

 Edge case circumstances, such as race conditions and overloading of processing

resources.

 Programmer mistakes, such as language mistakes, or incorrect of use of hardware –

use of disabled peripherals, bad parameters, index out of range, hardware exceptions,

divide by zero, etc. These are often in the form of “exceptions” and “assert” failures.

 Hardware components may have shifted values; connections break.

 Environmental conditions – such as a component being used out of its operating

range, a low battery, and so forth.

It is important to note: the software can perform with high quality, and the programmable

system low quality. This can come from the wrong requirements, at any level.

3.2. HOW QUALITY SOFTWARE CAN BE ACHIEVED

Steps to quality software include recognizing that

 It is an acquired, disciplined art.

 It requires practice, diligence and assessment

 Organizations must teach how to write quality code.

 The organization must value quality software in order for the individual to value it

 The development organization has a culture of accountability and commitment

 There is encouragement for respectful, frank, rational conversations about failures

 Information, activities and agreements are explicitly communicated (rather than tacit

and assumed)

 A study and critique of other projects – whether they be internal, competitors or

public ones – to understand good and bad patterns.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 8

3.3. TESTING

Testing

 Has an important role in quality

 Most often removes the “easy” and frequent bugs

 Won’t find subtle timing bugs and edge cases. It can help regression test to ensure

that specific occurrences do not recur

 Doesn't improve workmanship

4. A TIP ON STAFFING

This guide generally does not address development process – plans, schedules, sequencing,

staffing, and so on. However, here are some opinionated tips:

1. Assign leadership to those who care about the quality. In any organization, there is a

leader somewhere who capitates the quality – even if there is one who drives a

minimum quality standard. It doesn’t matter if the quality is something aesthetic (like

being stylish & usable), or a process quality (like being maintainable and traceable),

or other quality aspects.

2. Work with people who value the development artifacts they are creating and the

processes they work in. My experience has been that people who dislike writing or

reading documentation will create poor documentation and the hate shines thru.

3. Encourage gracious professionalism1 where the staff is fiercely driven, seeks mutual

gain, are intensely respectful and kind

4. Reduce stress. Faux urgency and cranking up the time pressure is a too common

managerial technique. Meeting regular shipment schedules or quality goals is a long

marathon.

In short, care and drive (or passion, internal motivation, pride).

5. REFERENCES AND RESOURCES

ISO/IED FDIS 25010:2011, “Systems and software engineering - Systems and software

Quality Requirements and Evaluation (SQuaRE) - System and software quality models” 2011

IEEE Std 730-2014, IEEE Standard for Software Quality Assurance Processes, 2014

IEEE Std 1061-1998, IEEE Standard for a Software Quality Metrics Methodology

IoT-SQH-00304, Software Synergy Software Quality Handbook, Renesas Electronics, Rev 3

2018 Jun

https://www.renesas.com/us/en/img/products/synergy/software/ssp/synergy-quality-

handbook.pdf

This is an excellent outline of Renesas’s Software Quality Process.

1 Coined by Dr Woodie Flowers, registered trademark of FIRST

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 9

CHAPTER 3

Process

This chapter describes the software development process:

 Process, specifications, and requirements

 The role of standards & certification

 System engineering

 Development plan

 Risk analysis

 Testing, Verification, Validation, and Testing

6. PROCESS

A process is how – implicitly or explicitly – an organization achieves a goal. Explicit

processes decompose the steps of what an organization may do (or must do or should do),

spelling out the activities and artifacts (more importantly information to be captured in the

artifacts). Rigorous processes attempt to assure that:

 the project will succeed,

 the schedule will be reasonably met,

 the cost of development is acceptable,

 the product is acceptable & performs as intended

 the product does not pose an unacceptable risk of harm

 the product is well made

 the product can be kept in use / operation for a period, including revising and

maintaining the product.

project assurance

design assurance

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 10

Detailed

design

Code

Reviews

Design

reviews

Source code

Design

Guidance

Development

plan

Coding Style

Guidelines

High-level

Design

Design

review

Bug Report

Guidelines

Planning

Guidance

Integration

tests

Unit Tests

Plan review

Specification Review Product test Test plan

Standard(s)Standard(s)
Certification

Tests

The motivation to use rigorous processes is to more directly check that the quality (especially

the safety related quality) is done right. As opposed to being satisfied by other aspects of the

development and concluding that quality is acceptable.

A design should be thoughtfully worked out, drilling down from the high-level specifications

to the more specialized specifications, and designs.2 Ideally – and depending on the rigor –

each should be assessed for appropriateness, matching the products intent and requirements.

Once a module’s design has been approved, its source code may be created in earnest.3

The process should call out (and provide) workmanship guidelines, style guides, standards,

and evaluation rubrics used to craft the source code; this is often done in the development

plan. One goal of the guides is to provide direction to producing clear code, with a low

barrier to understanding and evaluation. The following chapters provide reference guides.

The source code should be reviewed (and otherwise inspected) against those guides, and

designs. The purpose of reviewing the work is to examine quality of construction – it is not an

evaluation of the engineers, and it is more identifying defects.

6.1. THE DIFFERENT TYPES OF SPECIFICATION DOCUMENTS

The documents – or portions of documents – discussed here include:

A high-level specification is a finite set of requirements specification, e.g. system

specification, customer inputs, marketing inputs, etc.

A requirements specification is a set of requirements, and clear text explaining or justifying

the requirements. A justification may base the requirement in other documents, such as

research, standards, regulations or other laws.

2 Designing of a “lower” layer can begin (and often does) based on the anticipated top-level design, and norms for

the lower layer. Its completion is dependent the top-level design being settled.

3 Not all reviews or designs must be complete before implementations begin, except in the most stringent of

processes. Modules built in an investigatory (or as a short-term shim) fashion are useful but should be considered in

an “as-is” or draft state, until they have been revised to match the design, workmanship rules, and so in.

Figure 3: Levels of

abstraction in

development process

high-level specification

requirements

specification

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 11

 A requirement is an identifiable definition of what an item must do.

 A customer requirement belongs in any of the top-level documents, but especially in the

customer (or user) requirements specification.

 A comment is text, usually to provide context, clarify or explain the requirement(s).

 An identifier can refer to product, specific version of the product, a document,

requirement, test, external document, or comment. In practice each item is given a label.

A design document explains the design of a product, with a justification how it addresses

safety and other concerns.

Test specifications describe a set of tests intended to check that the product meets it

requirements. The test specifications define:

 A set of test requirements that define what tests a product must pass.

 A set of test procedures that carry out the test requirement and test the product

 A mapping of a test requirement to a set of requirements that it tests. {note: this may be

covered in the trace below.}

A test report is a set of outcomes: <test id, product id, result> describing how a product

performed under test. (The performance may vary with versions of the product)

A requirements trace matrix is used to identify requirements that are not carried thru to lower

requirements specifications and designs; and (in stringent cases) identify features of the

design without requirements, and requirements in lower documents that are not driven by

these at a higher level. Logically it forms a directed acyclic graph:

 It maps a requirement to the set of requirements that it directly descends from

 It maps a requirement to a set of requirements that directly or indirectly descends from it.

6.2. CRITICAL THINKING

Quality oriented – and especially safety oriented – processes apply analysis and reasoning to

further improve the product being developed. All processes try to the address

what/why/where/when/how questions, by identifying where the information is or comes from:

What are we making?

1. The high-level specification

How do we know that we have the right (product) specification(s)?

1. Standards

2. Stakeholder reviews

3. Customer feedback (e.g. voice of customer)

4. Hazard analysis

5. Usability studies

6. Field tests

How do we know that the product meets the specification(s)?

1. Verification activities of the system and subsystem

2. Validation activities of the product

requirement

customer requirement

comment

identifier

design document

test specification

test requirements

test procedure

test report

trace matrix

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 12

Why are we confident that product is well made and safe?

1. Reviews of specifications and design

2. Analysis of the specification for key qualities, esp. safety

3. Verification & validation, testing

How do we know if a part of a higher-level specification was missed when making a lower-

level (more specific) specification?

1. Tracing

2. Validation & validation, testing

How do we know what to do?

1. Specifications

2. Development plans

3. Guidelines, e.g. coding style guides, design guides

4. Development protocols & work instructions

Why the product was designed and made this way?

1. Specifications

2. Guidelines, e.g. coding style guides, design guides

3. Design documentation

4. Design reviews

and so on

7. THE ROLE OF CERTIFYING STANDARDS

Product certification – specifically the standards being certified against – may drive software

quality. Standards approach software quality as necessary to achieve product quality,

especially safety and security. To simplify (and over generalize), such standards have

specifications that address the following areas of software quality:

 Risk management, including analysis, assessment and control of the risks

 The process and artifacts, and how they will be stored and updated. These include a

software development lifecycle (SDLC) and quality management systems (QMS)

 Techniques to be applied in the software design and implementation

 Tests and characterizations to be applied.

Some important examples of the safety-facing standards are:

 IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-

related systems (Part 3 deals with software and Part 7 with specific techniques)

 IEC 60730: Automatic Electrical Controls. (Annex H deals with software)

 ANSI/IEC 62304:2006 Medical Device Software – Software Lifecycle Processes

 DO-178C, Software Considerations in Airborne Systems and Equipment Certification

 IEEC Std 7-4.3.2 2010 IEEE Standard Criteria for Digital Computers in Safety Systems

of Nuclear Power Generating Stations

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 13

7.1. IEC 61508 AND DERIVATIVE STANDARDS (E.G. IEC 60730)

IEC 61508’s has many process facing areas, over a complete safety life cycle. It mandates

 A specific safety management approach, parallel to the development of primary

functionality. This produces a set of software safety requirements.

 A specific risk management approach, including a risk assessment and analysis approach

that is far more strenuous than the art in many fields. (And was when it was introduced).

 A software development lifecycle4, with several activities to be performed, and several

artifacts to be produced.

 A mandate and guidance to apply very specific & detailed software design and

implementation techniques, depending on the classification of software. Most of the

techniques had been documented at least two decades prior to the first version of the

version (1998-2000); all were documented at least decade prior. Most, however, were

not in common use outside of niche applications.

Several IEC standards adapt IEC 61508 (a basic safety publication) for an industry segment, a

group of products (a group safety publication), or specific applications (product publications).

The IEC group safety publications may normatively reference the IEC 61508 standard (that is,

mandate its use), or choose to incorporate the relevant portions into the narrower standard,

with some modifications. The product publications are specific standards targeting

requirements of specific categories of products or applications. These specific standards often

modify the group standard, reducing the stringency in some areas.

IEC 60730-1 incorporates much of IEC 61508’s software requirements (but not the risk

assessment system) for home appliances. This includes the production of software safety

requirements. The IEC 60730-2-xyz standards specify requirements for various types of

appliances. IEC 60730 divides functionality (including software function) into three

categories of safety:

 Class A are the functions that are not relied upon for safety

 Class B are the functions that directly (or indirectly) prevent unsafe operation

 Class C are the functions that directly (or indirectly) prevent special hazards (such as

explosion).

IEC 60335 follows the same pattern: 60335-1 incorporates most (but not all) of IEC 60730

software requirements. The IEC 60335-2-xyz standards specify requirements for various

types of appliances.

This guidebook has been structured in such a manner to directly support software

development under these standards. This includes not just software design & implementation,

but the artifacts: requirements, design, and documentation.

7.2. ANSI/IEC 62304

ANSI/IEC 62304 is a software development lifecycle document, and it is organized in the

classic “v-model” fashion. It mandates a variety of artifacts and activities in the software

development. It works intimately with a separate risk management process, and quality

management system.

4 Modern software development lifecycle can be found in IEEE Std 12207 (ISO/IEC 12207).

IEC 61508

see Appendix B for

more

IEC 60730

see Appendix B for

other classifications

IEC 60335

ANSI/IEC 62304

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 14

Like IEC 60730, it divides software into three categories of safety:

 Class A are the functions that pose no risk of injury

 Class B are the functions that pose a “non-serious” risk of injury

 Class C are the functions that could result in death or serious injury

It mandates a formal development process, including checkpoints with formal reviews and

signoffs by key personnel, assuring successful completion of all criteria.

This guidebook has been structured in such a manner to directly support software

development under these standards. This includes not just software design & implementation,

but the artifacts: requirements, design, and documentation.

Note: ANSI/IEC 62304 is meant to work with a risk management approach, but – unlike IEC

61508 – it is expected to be provided separately. It also expects to work with a separated

defined quality management system.

7.3. A SIDE NOTE ON THE ECONOMIC BENEFIT TO DEVELOPMENT

Vendors have developed support for these software functions, as these functions are employed

in many product markets. Their support is in the form of certified microcontroller self test

libraries, and application notes giving guidance on how to meet these standards (especially

using their libraries).

This standardization also provides a means of identifying the skills and experience needed,

and thus able to find expert workers.

7.4. THE SAFETY ELEMENTS

The standards atomize – with respect to behaviour and element of electronics and software –

the product functions & requirements into:

Product high-level

specification

functions

Risk

management

Detailed

Specification(s)

Safety requirements

Standard(s)

Safety related control

functions

Design

functions

Control functions

Safety related control functions

Safety critical functions

Figure 4: Where key

functions &

requirements are

identified in the process

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 15

The high-level specification of the product defines the intended, primary function of the

product. The function is its role or purpose, and the operations that it is intended to perform.

The standards identify control functions5 that are to be provided by the product and its design.

The standards categorize functions along three axes:

1. Whether or not it is a control function relevant to safety (earlier this was rated as type

A, B, or C);

2. Whether or not the function is critical to the operation of a safety control function

3. Whether or not software is responsible (at least in part) for the function

This becomes:

Safety-related control functions are a type of control function that prevent unsafe conditions

and/or allows the operator to use the equipment in the intended, safe manner. In IEC 60730

Type B control functions prevent unsafe state; Type C prevents special harms. The product

specifications and design often expand the number of control functions and elaborate their

specific operation.

The safety critical functions are those functions that, should they fail, present a hazardous

situation. This may be because they impair the ability for safety-related control function to

fulfill its specification. The standards impose a variety of software functions to “self-check”

that the microcontroller (or other programmable element) is functioning sufficiently to carry

out the other functions. A safety-related control function is often (but may not be) a safety

critical function, but not all safety critical functions are safety-related control functions.

When software is used to realize (i.e. implement) a safety-related control function, or a safety

critical function, the standards impose many requirements on the design and behaviour of the

software (and supporting electronics). This is a very good thing for quality, and this

guidebook is intended to help address these.

The product and subsystem specifications are to provide a detailed set of safety requirements,

which specify in detail the functional behaviour of the product, and each of those safety-

related control functions and safety-critical functions. This is true for the functions

implemented by software. The software safety requirements are to provide added

requirements that address:

 potential faults in the software as well as the programmable element (e.g. the

microcontroller) and the electronics,

 construction techniques of the software to prevent or mitigate software flaws

The motivation to use a rigorous process is to more directly check that the safety related

behaviour is done right. As opposed to being satisfied by other aspects of the development

and concluding that safety is acceptable.

8. SOFTWARE DEVELOPMENT PLAN

A development plan should be put into place before the software is created. The development

plan typically includes:6

 Names

5 Function(s) can have types (or roles) such as control, filter, protection, monitoring, test, conversion, limiting,

distribution, isolation, protection, and so on.
6 A development plan includes much more, related project assurance, process, management, staffing, etc.

function

control function

safety-related control

function

safety-critical function

safety requirements

software safety

requirements

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 16

 Location of artifacts and sources

 Tools and key components

 Workmanship guides and how the workmanship will be evaluated. This includes a

coding style guide, which identifies a good, restricted subset of a programming language

that is acceptable to use.

 Steps that will be done in the development process, such as reviews and risk analysis

 How changes to the software will be managed. What is the source code repository? Is

commit approval required from a module owner? (e.g. the owner evaluates the

appropriateness of the changes to their area of the code base.)

 How issues, bugs and so on are tracked, prioritized, and dispositioned. Example

templates for bug reporting can be found Appendix D and categorization of the defect in

Appendix E.

Software development plans are about being organized to succeed, and to keep succeeding for

a long time. Most projects (e.g. those lasting a few months with a small number of people) do

not need to spell out all the potential elements; the ones listed above are often sufficient.

9. RISK ANALYSIS

At regular steps, an analysis is performed to double check that the safety control functions,

safety requirements, and design provide a acceptably safe product. The objective is “to

identify and correct deficiencies and to provide information on the necessary safeguards.”

A hazard analysis is a process performed on the product, its specifications, functions, and

design.

 It identifies a set of potential harms that the product (or its use) presents

 It maps a harm to severity or severity class

 It identifies a set of hazards or hazard classes that are potential sources of harm

 It maps a hazard or hazard class to likelihood or frequency that it may occur

 It maps the combined severity of harm and likelihood of occurrence to an acceptability

level. This is done using an accepted rubric, most often a risk acceptability matrix.

The acceptability level is used to prioritize changes to the specifications and design. The

changes must be made until there are no unacceptable risks presented, and that the cumulative

(overall) risks presented is at an acceptable level. The changes often included added functions

(such as tests of the hardware or operating conditions), tighter conditions on existing

requirements, added requirements, and the like.

A risk analysis follows the same pattern, checking that the specification, functions and design

of a subsystem for the risks that the subsystem will present a hazard. A software risk analysis

is what the software may contribute to risk or control of the product risks.

 Each risk analysis builds an upon earlier risk analysis

 Each type of analysis may produce a different, but related, form of output

 Each produces a summation of hazards (and risks), any identified rework, and mandates

for tests for Verification & Validation activities.

UCRL-ID-122514

hazard analysis

harms

severity

severity class

hazards

hazard class

likelihood

 risk acceptability level

risk acceptability

matrix

risk analysis

software risk analysis

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 17

9.1. INPUTS AT EACH STAGE OF SOFTWARE RISK ANALYSIS

Software is analyzed at several stages of development to assess how it will impact products

risk. The table below summarizes the inputs to each of the software risk analysis:

Requirements risk
analysis

Architecture risk
analysis

Detailed Design risk
analysis

Source code analysis

Product Preliminary
Hazards list

Product Preliminary
Hazards list

Product Preliminary Hazards
list

Product Preliminary Hazards
list

Product Risk analysis Product Risk analysis Product Risk analysis Product Risk analysis

Programmable system
requirements

Programmable system
requirements

Programmable system
requirements

Programmable system
requirements

Programmable system
description

Programmable system
description

Programmable system
description

Programmable system
description

Software requirements Software requirements Software requirements Software requirements

 Software requirements
risk analysis

Software requirements risk
analysis

Software requirements risk
analysis

 Software architecture
description

Software architecture
description

Software architecture
description

 Software architecture risk
analysis

Software architecture risk
analysis

 Software design description Software design description

 Software design risk analysis

 Coding style guide

Source code

The risk analysis of the source code itself is covered by specialized code reviews.

10. TERMS RELATED TO TESTING, VERIFICATION, AND VALIDATION

A fault is a system or subsystem deviating from its specification, e.g. not meeting one or more

of its functional requirements.

A failure is not providing service to the user, e.g. not meeting user requirement, often a user

non-functional requirement.

Verification7 is set of activities that include:

 Testing the item against its specifications, esp. those framed as requirements.

 Inspecting and review the items standards, specifications, design, and construction

Validation includes verification of the item, and activities that include:

 Testing the item against the higher-level (such as the product’s) specifications, usually

the user and system requirements.

 Inspecting and review the items against the higher-level (such as the product’s)

standards, specifications, design, and construction

 Testing the item against use cases

7 As there are many muddled definitions of verification and validation, I am using definitions that are compatible

the FDA guidance, DO-178C, and DO-254

Table 3: Inputs for

each kind of risk

analysis

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 18

 Performing field trials, usability studies

 Evaluating customer feedback.

11. REFERENCES AND RESOURCES

DO-178C, Software Considerations in Airborne Systems and Equipment Certification, RTCA,

Inc. 2012 Jan 5

This is a particularly stringent standard. It seeks to ensure that not only ensure that all

requirements and functions (from the top on down) are carried thru and test… it also

seeks proof that no element of software, function, or requirement is present unless it

traces all the way back to the top.

RTCA/DO-254, Design Assurance Guidance for Airborne Electronic Hardware, RTCA, Inc.

2000 Apr 19

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related

systems 2010

Part 3 deals with software and Part 7 with specific techniques. The software and

electronics techniques to check the programmable element function are well founded,

providing a good explanation of their motive, approach, and many references for each.

The testing portion is a bit of a muddle.

IEC 60730: Automatic Electrical Controls, 2010

Annex H deals with software

UL 1998, Standard for safety – Software in Programmable Components

11.1. RISK MANAGEMENT

UCRL-ID-122514, Lawrence, J Dennis “Software Safety Hazard Analysis” Rev 2, U.S.

Nuclear Regulatory Commission, 1995-October

ISO 14971:2007, Medical devices – Application of risk management to medical devices

EN ISO 14971:2012, Medical devices. Application of risk management to medical devices

This standard is for the European market; the earlier one is for the rest of the world

Speer, Jon “The Definitive Guide to ISO 14971 Risk Management for Medical Devices”

Greenlight Guru, October 5, 2015

https://www.greenlight.guru/blog/iso-14971-risk-management

A clear introduction to the concepts and steps, with some elegant diagrams.

11.2. DEVELOPMENT LIFECYCLE

ANSI/IEC 62304:2006 Medical Device Software – Software Lifecycle Processes

This is a well written standard on the development life cycle.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 19

ATR-2011(8404)-11, Marvin C. Gechman, Suellen Eslinger, “The Elements of an Effective

Software Development Plan: Software Development Process Guidebook” 2011-Nov 11,

Aerospace Corporation, Prepared for: Space and Missile Systems Center, Air Force Space

Command

http://www.dtic.mil/dtic/tr/fulltext/u2/a559395.pdf

The above guide is particularly rigorous and intended for long-lived project (e.g. two

decades) with large & changing hierarchies of many people working for many

different organizations (thus many organizational boundaries), across a geographic

area, and wide range of organizational roles and backgrounds. The SDP is creating an

institution for the development & maintenance.

ISO/IEC/IEEE 12207:2017(E) “Systems and software engineering – Software life cycle

processes”

This standard is a successor to J-STD-016, which is a successor to MIL-STD-498,

which is a successor to DOD-STD-2167A and DOD-STD7935A. (And that only

dates to the 1980s!) It “does not prescribe a specific software life cycle model,

development methodology, method, modelling approach, or technique.”

ISO/IEC/IEEE 15288:2015, Systems and software engineering – System life cycle processes

Wikipedia, Software development process

https://en.wikipedia.org/wiki/Software_development_process

Provides a history of the different contributions to software development processes

11.3. QUALITY MANAGEMENT, TEST

FDA, “Design Control Guidance for Medical Device Manufacturers,” 1997 March 11

IEEE Std 1012-2004 - IEEE Standard for Software Verification and Validation. 2005.

doi:10.1109/IEEESTD.2005.96278. ISBN 978-0-7381-4642-3.

ISO/IED FDIS 25010:2011, “Systems and software engineering – Systems and software

Quality Requirements and Evaluation (SQuaRE) - System and software quality models” 2011

ISO/IEC/IEEE 29119, Software Testing Standard

ISO/IEC/IEEE 29119-1: Concepts & Definitions, 2013 September

ISO/IEC/IEEE 29119-2: Test Processes, 2013 September

ISO/IEC/IEEE 29119-3: Test Documentation, 2013 September

ISO/IEC/IEEE 29119-4: Test Techniques, 2015 December

ISO/IEC/IEEE 29119-5: Keyword Driven Testing, 2016 November

ISO/IEC 90003 Software engineering – Guidelines for the application of ISO 9001:2008 to

computer software

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 20

[This page is intentionally left blank for purposes of double-sided printing]

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 21

CHAPTER 4

Requirements

Checklists

This chapter provides a requirements review checklist.

12. OVERVIEW OF WELL WRITTEN REQUIREMENTS

The presentation of a requirement in the text should include:

 Clear demarcation of the requirement. For instance, place the requirement on an

indented line, by itself.

 A means to uniquely identify or refer to the requirement. It is important to be able to

identify the requirement be discussed. The requirement will be referred to in other

documents, trouble tracking, etc.

 A brief summary of the requirement and its purpose or intent.

 The actor who carries out or meets the requirement. The actors should be defined

earlier in the section or the document.

 What the actor is to do

 Source and Rationale, the description of the requirements role, purpose, motivation,

and/or intent must be clear and readable; along with sources that these come from.

The quantities for time and values have sources and rationale.

12.1. PROPERTIES OF A GOOD REQUIREMENT

A well-written requirement exhibits the following characteristics:

 Complete – contains sufficient detail to guide the work of the developer & tester

 Correct – error free, as defined by source material, stakeholders & subject matter

experts

 Concise – contains just the needed information, succinctly and easy to understand

 Consistent – does not conflict with any other requirement

 Unambiguous – must have sufficient detail to distinguish from undesired behaviour.

includes diagrams, tables, and other elements to enhance understanding.

 Time bounds: how fast, how long, how soon it acts or when, etc.

 What value and bounds; the quantities have units

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 22

 Verifiable (or testable) – when it can be proved that the requirement was correctly

implemented

 Feasible – there is at least one design and implementation for it.

 Necessary – it is traced to a need expressed by customer, user, stakeholder.

 Traceable – can be traced to and from other designs, tests, usage models, etc. These

improves impact assessment, schedule/effort estimation, coverage analysis scope

management/prioritization

Note: a requirement must not be the “design” in disguise; it must come from the input

requirements and architecture. The statements that represent the design are called key

responsibilities and responsibilities, these live in the architecture and detailed design

documents.

13. REQUIREMENTS REVIEW CHECKLIST

See also

 Appendix F for the Code Complete Requirements Review check lists

Names:

 Are the names clear and well chosen? Do the names convey their intent? Are they

relevant to their functionality?

 Is a good group / naming convention used? (e.g. related items grouped by name)

 Is the name format consistent?

 Names only employ alphanumeric characters?

 Are there typos in the names?

13.1. ARE THE PROPERTIES, STATES AND ACTIONS WELL DEFINED?

 Is a definition duplicated?

 Is a property defined multiple different times... but defined differently?

 Are the definitions complete?

o Are all instances and kinds defined – or some missing?

o Are there undefined (i.e., referred to, but not defined) nouns, properties, verbs?

o Are events referred to but not defined?

 Are they consistent?

 Are the properties something that the system can measure or otherwise detect?

 Are the instances something that the system can identify or otherwise distinguish?

 Is a state not needed? Is it used by a state classification, action, event, or requirement?

 Is a property not needed? Is it used by a state classification, action, event, or

requirement?

 Are the properties something that the system can detect?

 Are the events something that the system can detect?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 23

13.2. REQUIREMENTS REVIEW

Reviewing requirements should look to identify:

 Are the requirements organized in a logical and accessible way?

 Is the requirement clearly demarcated?

 Does the requirement have a clear and fixed identifier? Is the identifier unique?

 Is the description supporting the requirement clear? Is it sufficient to support the

requirement?

 Is the requirement too wordy? A requirement should be concise, containing just the

needed information.

 Does the requirement use the proper modal auxiliaries?

 Does the requirement have the right conditions? The ubiquitous form of requirement is

rare. Look for missing triggers and other conditions on the requirement.

 Are the time-critical features, functions and behaviours identified? Are the timing

criteria specified?

 Is there requirement declarative? Or is the requirement an attempt to repackage an

existing implementation with imperative statements? These are bad.

 Does the requirement conflict with any other requirement? Is its use of conditions (e.g.

thresholds) consistent with the other requirements?

 Is the action to carry out clear? Is the action well defined within the rest of the

specification?

 Are the actions something that can be accomplished?

 Duplicated requirements?

 Ambiguity. Can the requirement be interpreted different ways? Is there sufficient detail

to distinguish from undesired behaviour?

 Is the requirement vague or ambiguous in any way? Pronouns, demonstratives, and

indexicals often introduce ambiguity.

 Is the requirement specifying a single action... or many? A requirement should specify

only a single action.

 Complexity. Is the requirement over specified, too complex?

 Requirements that are too expensive, burdensome, impractical or impossible

 Are the requirements ones that fit the practical use with customer wants/needs/etc?

 Is the requirement unnecessary? Does it lack a trace to a need expressed by customer,

user, or stakeholder? Is each requirement traceable to a customer that requires it?

 Check for consistency and sufficient definition

 Does the requirement have errors, such as misstating bounds, or conditions in the source

material, or from other stakeholders or subject matter experts?

 Are there missing requirements? Is there a lack of sufficient detail to guide the work?

13.3. ARE THE REQUIREMENTS TESTABLE?

 Are the triggers something that the system can detect?

 Is the action or result of the requirement observable? Can it be measured?

 Are the quality requirements measurable?

 Is the requirement time bound? Is there a clear time bounds between the condition or

trigger, and the action?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 24

 Is the requirement untestable? Is there a direct means of stating how to test that the

requirement was correctly implemented?

 Is the actor to carry out or meet the requirement clear? Is the actor well-defined within

the rest of the specification?

 Are the actions testable? Is their outcome testable?

 Is the requirement bounded? Or is the actor allowed to do the requirement at the end of

the universe?

13.4. THE LEADS REVIEW REQUIREMENTS

 Are they complete? Are requirements or definitions missing? Are there undefined

nouns, properties, verbs?

 Are they consistent?

 Are they doable?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 25

CHAPTER 5

Software Risk

Analysis

This chapter provides an initial template for software risk analysis.

14. SOFTWARE REQUIREMENTS RISK ANALYSIS

The outputs of a software requirements risk analysis include:

 A table mapping risks to the requirements that address it. This table may have been

produced by another activity and is only referenced in the output

 A list of software risks, acceptability level, and their disposition

 A criticality level for each hazard that can be affected by software

 Recommended changes to the software requirements specification, programmable

system architecture, etc. For example, actions required of the software to prevent or

mitigate the identified risks.

 Recommended Verification & Validation activities, especially tests

The steps of a software requirements risk analysis include:

1. Identify the requirements that address each product hazards

2. Examine the risks of errors with values

3. Examine the risks of message capacity

4. Examine the risks of timing issues

5. Examine the risks of software functionality

6. Examine the risks of software robustness

7. Examine the risks of software critical sections

8. Examine the risks of unauthorized use

9. Recommendations for rework

14.1. STEP 1: IDENTIFY THE REQUIREMENTS THAT ADDRESS PRODUCT HAZARDS

Go thru each identified product hazard and list the software requirements that address it.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 26

14.2. STEP 2: EXAMINE ALL VALUES FOR ACCURACY

Identify all the elements of the system – sensor 1, sensor 2, actuator, motor, calculations,

operator inputs, operator outputs, each parameter received, etc. For each of these elements,

create a copy of Table 4 (below) and populate it with an analysis with respect to the

requirements. Strike inapplicable conditions and add other identified conditions.

Condition Hazard, likelihood & severity

the value is off by 5% of the actual value

the value is stuck at all zeroes

the value is stuck at all ones

the value is stuck at some other value

the value is too low; the value/ result is below minimum range

the value is within range, but wrong; with calculation, e.g. the

formula or equation is wrong

the physical units are incorrect

the value is incorrect (for non-numerical values)

the value type, or format size is wrong

In reviewing each condition, identify the least acceptable risk for each applicable condition.

Other documents (i.e. the product safety risk analysis) are responsible for the identifying the

set of possible hazards and their severity. Table 5 provides example likelihood levels; Table

6 provides an example mapping of severity & likelihood pair to risk acceptability.

Likelihood Estimate of Probability

Frequent Likely to occur on in the life of an item, with a probability of occurrence greater than 10-1 in

that life.

Probable Will occur several times in the life of an item, with a probability of occurrence less than 10-1 by

greater than 10-2 in that life

Occasional Likely to occur sometime in the life of an item, with a probability of occurrence less than 10-2

but greater than 10-3 in that life.

Remote Unlikely, but possible to occur in the life of an item, with a probability of occurrence less than

10-3 but greater than 10-4 in that life.

Improbable So unlikely, it can be assumed occurrence may not be experienced, with a probability of

occurrence of less than 10-4 in that life.

 Catastrophic Critical Marginal Negligible

Frequent high high high medium

Probable high high medium low

Occasional high high medium low

Remote high medium low low

Improbable medium low low low

Table 4: Value

accuracy risks

Table 5: Hazard

probability levels

based on Mil-Std 882

Table 6: An example

risk acceptability

matrix determining risk

acceptability

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 27

14.3. STEP 3: EXAMINE THE MESSAGES CAPACITY

This step examines the ability of the software to achieve its objectives within the hardware

constraints.

Identify all the messaging elements of the system – I2C sensor, task 1, user input, etc. For

each of these elements, create a copy of Table 7 (below) and populate it with respect to the

requirements. Strike inapplicable conditions and add other identified conditions.

Condition Hazard, likelihood & severity

message is smaller than state minimum

message is larger than stated maximum

message size is erratic

messages arrive faster than stated maximum (e.g. response time)

messages arrive slower than stated minimum (e.g. response time)

message contents are incorrect, but plausible

message contents are obviously scrambled

In reviewing each condition, identify the least acceptable risk for each applicable condition.

14.4. STEP 4: EXAMINE THE CONSEQUENCES OF TIMING ISSUES

This step examines the ability of the software to achieve its objectives within the hardware

constraints.

Identify all the input elements of the system – button #1, frequency input, I2C sensor, task 1,

user input, etc. This list should include elements those receive messages and send messages.

For each of these elements, create a copy of Table 8 (below) and populate it with respect to

the requirements. Strike inapplicable conditions and add other identified conditions.

Condition Hazard, likelihood & severity

input signal fails to arrive

input signal occurs too soon

input signal occurs too late

input signal occurs unexpectedly

input signal occurs at a higher rate than stated maximum

input signal occurs at a slower rate than stated minimum

system behavior is not deterministic

output signal fails to arrive at actuator

output signal arrives too soon

output signal arrives too late

output signal arrives unexpectedly

insufficient time allowed for operator action

In reviewing each condition, identify the least acceptable risk for each applicable condition.

Table 7: Message

capacity risks

Table 8: Timing

capacity risks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 28

14.5. STEP 5: EXAMINE SOFTWARE FUNCTION

This step examines the ability of the software to carry out its functions.

Identify all the functions of the system; the operations which must be carried out by the

software. For each of these elements, create a copy of Table 9 (below) and populate it with

respect to the requirements. Strike inapplicable conditions and add other identified

conditions.

Condition Hazard, likelihood & severity

Function is not carried out as specified (for each mode of operation)

Function preconditions or initialization are not performed properly

before being performed

Function executes when trigger conditions are not satisfied

Trigger conditions are satisfied but function fails to execute

Function continues to execute after termination conditions are satisfied

Termination conditions are not satisfied but function terminates

Function terminates before necessary actions, calculations, events, etc.

are completed

Function is executed in incorrect operating mode

Function uses incorrect inputs

Function produces incorrect outputs

In reviewing each condition, identify the least acceptable risk for each applicable condition.

14.6. STEP 6: EXAMINE SOFTWARE ROBUSTNESS RISKS

This step examines the ability of the software to function correctly in the presence of invalid

inputs, stress conditions, or some violations of assumptions in its specification.

Create a copy of Table 10 (below) and populate it with respect to the requirements. Strike

inapplicable conditions and add other identified conditions.

Condition Hazard, likelihood & severity

Software fails in the presence of unexpected input signal/data

Software fails in the presence of incorrect input signal/data

Software fails when anomalous conditions occur

Software fails to recover itself when required

Software fails during message, timing or event overload

Software fails when messages are missed

Software does not degrade gracefully when required (e.g. crashes

instead)

In reviewing each condition, identify the least acceptable risk for each applicable condition.

Table 9: Software

function risks

Table 10: Software

robustness risks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 29

14.7. STEP 7: EXAMINE SOFTWARE CRITICAL SECTIONS RISKS

This step examines the ability of the system to perform the functions that address or control

risks.

Create a copy of Table 11 (below) and populate it with respect to the requirements. Strike

inapplicable conditions and add other identified conditions.

Condition Hazard, likelihood & severity

Software causes system to move to a hazardous state

Software fails to move system from hazardous to risk-addressed state

Software fails to initiate moving to a risk-addressed when required to

do so

Software fails to recognize hazardous state

In reviewing each condition, identify the least acceptable risk for each applicable condition.

14.8. STEP 8: UNAUTHORIZED USE RISKS

Create a copy of Table 12 (below) and populate it with respect to the requirements:

Condition Hazard, likelihood & severity

Unauthorized person has access to software system

Unauthorized changes have been made to software

Unauthorized changes have been made to system data

In reviewing each condition, identify the least acceptable risk for each applicable condition.

14.9. STEP 9: RECOMMENDATIONS FOR REWORK

Summarize each of the identified conditions with an unacceptable risk level. These items

mandate rework, further analysis, and/or Verification & Validation activities.

15. REFERENCE DOCUMENTS

MIL-STD-882E “Standard Practice System Safety” 2012 May 11

NASA-GB-8719.13, NASA Software Safety Guidebook, NASA 2004-3-31

NASA-STD-8719.12, NASA Software Safety Standard, Rev C 2013-5-7

UCRL-ID-122514, J Dennis Lawrence, Software Safety Hazard Analysis Rev 2, U.S. Nuclear

Regulatory Commission, 1995-October

Table 11: Software

critical sections risks

Table 12:

Unauthorized use

risks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 30

[This page is intentionally left blank for purposes of double-sided printing]

“A good engineer tries to get something not to work – that is, after getting it working, the good engineer

tries to find its limits and make sure they are well-understood and acceptable.”

– Michael Covington

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 31

PART II

Software Design &

Documentation

This part provides guides for software design and its documentation

 OVERVIEW & WRITING TIPS.

 OVERVIEW OF SOFTWARE DESIGN.

 GUIDELINES FOR HIGH-LEVEL DESIGNS. Provides guidelines for high-level designs (e.g.

architectures).

 SOFTWARE ARCHITECTURE RISK ANALYSIS.

 GUIDELINES FOR DETAILED DESIGNS. Provides guidelines for detailed designs (e.g. major

subsystems or “stacks”).

 PROTOCOL DOCUMENTATION TEMPLATE. Provides a guide for protocol documentation.

 PROGRAMMER DOCUMENTATION. The software documentation primarily for software

developers, often created with doxygen, docfx, and markdown.

 SOFTWARE MODULE DOCUMENTATION TEMPLATE. Provides a guide for detailed design

documentation of a module.

 GUIDELINES FOR MODULE DESIGNS. Provides guidelines for low-level module design.

 DESIGN REVIEWS CHECKLISTS. Provides checklists for reviewing a design.

 SOFTWARE DETAILED DESIGN RISK ANALYSIS REVIEWS. Describes reviewing software

for risk analysis.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 32

[This page is intentionally left blank for purposes of double-sided printing]

“Design is the higher-level understanding of how we decompose the system into interacting parts.”

– Eric Normand

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 33

CHAPTER 6

Design Overview &

Writing Tips

This chapter gives some the recommendations for design documentation

 The role and characteristic of design documentation

 Organization of the documentation

16. THE ROLE AND CHARACTERISTICS OF DESIGN DOCUMENTATION

This chapter describes my recommendations for writing design documentation. The role of

documentation is to

 Provide assurance to an outside reviewer – one without the tacit knowledge that the

developing team and organization will share – that the product is well-crafted and

suitable for its intended purpose and will achieve the safety & quality requirements.

 Communicate with future software development, and test teammates; and to reduce the

puzzles and mysteries when handed a completed software implementation with the

expectation to make it work/modify it/test it.

 Drive clarity of thought on the part of the designers; experience has repeatedly shown

that if it can’t be explained clearly, it isn’t understood. A lack of understanding impairs

product quality and creates project risk (thrashing).

The design documentation

 Establishes the shape of the software modules

 Shows how the design addresses the software requirements and other specifications

 Provides a mental map of the design, making the design understandable.

Characteristics of a good design description include:

 A straightforward mapping to the implementation

 Mixing visuals and text to explain the concepts in alternate ways

 Scoping diagrams so that the amount to hold in the readers head is small

The requirements at the design stage should provide a clear enough view to allow the high-

level design to be crafted.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 34

16.1. TIPS ON THE WRITING PROCESS

This section focuses on presenting the design as much as it does on tips for crafting a design.

I’ve found that most engineers dislike documentation and defending in detail their designs.8

That’s a pity, since the documentation is a necessary skill in quality software domains (such

as safety critical products), and an important one to project success. Some tips:

1. Read & study good examples of design and design documentation. These can be

found in books like McKusick (2004), and Kehan (1987). Other examples might be

found in application notes, and past projects

2. Use templates and writing guides. They provide the scope and main outline, reducing

the burden of how to organize the documentation.

3. Plan on the design in stages of completeness: a preliminary version of the design

before the development begins in earnest, revisions during design discussions, and a

finished design at the end of the project.

4. Take the writing in small, doable pieces. Write the document in a series of drafts,

targeting only a few pages a day. Revise the draft and repeat.

5. Start with the areas that you know what to write; don’t necessarily worry about

starting with lower-level design documents if that is what you know. They won’t be

committed to yet, but the information and experience will help write the upper layers.

6. Then work down from the top – or up from the bottom – in a vertical slice relevant to

what you do know. Add in organizational material (such as outlines for the section)

or an expository explanation and keep moving. Use stubs – such as “TBD” – for

specific values, names or other references that you do not know yet.

16.2. AUDIENCE

The audience for the design documentation includes:

 The certifying body

 The development team

 Management, such as project manager

 The regulatory affairs department (i.e. the design history file)

 Release engineering

 The software and system test group

 Technical publications

17. DOCUMENTATION ORGANIZATION

One of the first steps in the developing the documentation is to pick a style or organization for

the documentation. This will help layout (block) the overall documentation, and provide not

just the structure, but the start of an outline and size of the work to accomplish the scope.

8 I’ve also found that the best designs, the highest quality ones, were produced quickly by designers who will love

talking with others about their designs, and crave to find others who will appreciate it.

McKusick, Marshall

Kirk and George V.

Neville-Neil. The

Design and

Implementation of

the FreeBSD

Operating System, 1st

Edition Addison-

Wesley Professional;

1st edition, 2004

Kenah, Lawrence;

Ruth Goldenberg.

VAX/VMS Internals

and Data Structures:

Version 5.2, Digital

Press, 1987

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 35

Use a concentric approach throughout:

“The concentric approach, often called spiral, is a way of organizing ... by laying out

basic concepts, covering other related material, and then circling back around to the

basic concept and filling in more complexity and depth.”

An expansive, large system is best served with documentation that subdivides the design into

several large portions with a mid-level design and then breaks into detailed design of the

individual components.

Communication

Top-level

Design

References

Glossary &

Acronyms

Appendices

GraphicsStorage

Application Motor Control Hdw Specific

Other

Appendices

Other

Appendices

Other

Appendices

Component

design

Component

design

Component

design

Microcontroller

Specifcs

Power

Management

Component

design

Component

design

Component

design

Component

design

Component

design

Component

design Self Test

Signal

Processing

Component

design

Component

design

Component

design Component

design

Component

design

Component

design

Component

design

Component

design

Component

design

A moderate, small system might be best served with documentation that introduces the high-

level design and then breaks into detailed design of the (many) individual components.

Top-level

Design

References

Glossary &

Acronyms

Appendices

Other

Appendices

Other

Appendices

Other

Appendices

Microcontroller

Specifcs

Power

Management
Component

design

Component

design

Component

design
Self TestApplication

logic

Note: Major portions of the structure may be mandated by the standards the product is being

certified against; and by the developing institutions processes. Many, for example, mandate

the presence of the references and glossary, but that they be in the front of the document.

The detailed design is actually an ensemble of documents that work together to provide the

description of how the software is intended to work, rationale for why decision choices were

made, external interfaces to operate the software and programmer details of the data

structures, procedures, and so on.

 The main detailed design document – most often what is meant when referring to a

detailed design. This provides the description of how the software achieve its functions,

and rationale for the design choices. The architecture would typically trace the design to

concentric approach

Figure 5: Structure of a

broad design with

moderate fan out

Figure 6: Structure of a

mid-size design, with

high fan out

detailed design

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 36

this document, and the requirements would also trace to this document. This and the

architecture can be a single document. Typically should be less than 150 pages.

 The documentation of communication protocols and storage formats – often called

interface control documents. Especially those external to the software.

 The programmer documentation is often made with tools such as doxygen or docfx to

format source code comments, augmented with structuring markdown files. This type of

document is a supplement and must not be confused with the main detailed design above

– the code is not the documentation! The unit tests would trace to this document,

usually the file listing portion. This type of generated document is often large and hard

to read. But it is possible to make it readable.

17.1. TERMS AND PHRASES TO EMPLOY

Once the broad structure is selected, begin thinking about the terms and phrases that are and

will be used in the project, and your approach in the documentation:

 What terms and phrases will be used?

 Which will not be used in the documentation?

 What additional terms and phrases should be given a translation to the project – a

mapping to the terms and phrases used in the design documentation?

The standards (to which the product may be certified against), and the specifications will

already be employing a stock of terms and phrases. The design doesn’t necessarily need to

use them (and it isn’t always warranted). In that case, the design document should provide a

definition of what those terms and phrases are in within the project.

The terms and phrases used should make sense for the project and design. They could come

from

1. The requirements and other specifications for the product

2. The jargon used within the rest of the organization, or team

3. Other conventions, such as the industry jargon.

The design should address the terms and phrases of the standards and specifications that are

not otherwise used in the design documentation. This can be achieved by providing a

mapping of these terms and phrases to those in the design.

17.1.1 Tips for getting the definitions for standards terms

Most standards provide a glossary of the terms and phrases that they use. However, the

definitions within a standard can sometimes be unclear, confusing or otherwise not helpful.

Fortunately, there are resources that can be used to gather variations of the definition to help

clarify the term or phrase.

The IEEE provides a glossary of terms in IEEE Std 610.12-1990.

There are two search-tool resources than can be used to look up the definitions across IEC

standards:

 http://www.electropedia.org/

 http://std.iec.ch/glossary

And for ISO standards:

interface control

document

programmer

documentation

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 37

 https://www.iso.org/obp/ui

17.2. APPENDICES

The design documentation often includes several appendices. The ones described here

 Acronyms and Glossary

 References, Resources and Suggested Reading

The following can be placed into the appendices of the programmer’s guide as they are

generally out of focus for the main detailed design. Second, several of these can use the same

tools to aid their generation (esp. on large projects) as the rest of the programmer’s guide.

 Configuration of the compiler, linker and similar tools

 Configuration or settings of the analysis tools and similar

 The files used in the project

 The configuration of the software. This is often divided into application and board-

specific configurations.

17.2.1 The Acronyms and Glossary

 I recommend that the list of acronyms and glossary be in the rear of the documentation. In

some development protocols it is preferred that they be in the front of the documentation.

In this appendix, define all acronyms, terms and phrases. We have all seen documents that

include definitions for simple, common items (such as a LED), while not defining specialized

items (such as “adaptive linear filter,” or “hybrid turboencabulator”) referred to heavily in a

document. Don’t do this.

I recommend that the expansion of acronyms to its words be presented in a separate list from

the definition of terms and phrases.

This appendix is “living,” the acronyms, terms and phrases will continue to expand and be

added to throughout the development. In good documentation the glossary can be extensive.

Tip: The acronyms and glossary are well suited for reuse in many projects. Make a stock

document with the most common terms and potted definitions to be included in each project.

17.2.2 The References, Resources and Suggested Reading

I recommend that the references be in the rear of the documentation, excluding (perhaps) the

list of standards that are inputs to the design. In some development protocols it is preferred

that they be in the front of the documentation.

In this references appendix the list should include data sheets, industry and legal standards,

communication protocols, etc. Include a designator for each document. Use this through the

remainder of this specification to refer to the document.

17.2.3 Files

The detailed design often includes an appendix or attachment listing the files. How much to

list depends on the stringency of development. Exhaustively listing the files is simply no joy.

The list should include

 Files with strange names

 Files with particular importance

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 38

The list should not include temporary or generated files (the object files, assembly listings,

temporary files, etc.). Describe each file and its role.

Can use groupings, folders and names to help organize the names.

17.3. REUSING DESIGNS AND DOCUMENTATION

Some observations on design and documentation reuse:

 Software libraries are one way to reuse designs. However, their design, creation, and

support are a development effort in and of itself, with many factors that impair success.

 The high-level design ideas are readily reused; so are specific low-level modules (e.g.

digital input, output, analog conversion, etc.).

 Good design practices facilitate easier reuse.

Some approaches and techniques to help promote reuse of designs:

 Divide the documentation in pieces that can be reused

 Provide a segment of time (e.g. at the end of the project) for reviewing and identifying

reusable sections.

 Identify, during design reviews, areas where prior design should9 have been reused.

Existing designs are (mostly) worked out; their reuse can accelerate a project schedule – if the

design is appropriate to the project. Such design must be stored in manner so that it is

accessible, easily found, and readily reusable. Each successive project may contribute to the

collection of reusable design pieces. I recommend:

1. Break out each chapter into its own file.

2. Create an overall structuring document for the design documentation.

To merge these into a single design document for release with a project:

1. Make a copy of that overall structuring document

2. Insert each of the files for the chapter

When it comes time to do another project, the chapters of the past projects serve as a starting

point for documentation reuse. The levels of documentation & design reuse:

1. Verbatim: The chapter is picked up and used without changes.

2. The chapter is copied and modified it to adapt it to the project.

3. A template document is reused where the structure is used largely unchanged, but the

contents are customized for the new project. This avoids re-inventing the structure,

and while using a fill-in-the-blank approach.

18. REFERENCES AND RESOURCES

Alred, Gerald, Charles Brusaw, Walter Oliu; Handbook of Technical Writing, 10nth Ed, St

Martin’s Press, 2011

IEEE Std 610.12-1990, IEEE Standard Glossary of Software engineering Terminology, 1990.

9 Note the emphasis is on should, not could. This step may be fraught with politics, which will undermine quality

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 39

CHAPTER 7

High-Level Design

Template

This chapter is a high-level design description (or architecture) document template.

19. BASIC OUTLINE

The structure of top-level design changes the most between projects. Often these are treated

as “living” – the document regularly evolves, starting from an initially skeletal design to one

that is fleshed out over time. The following is an outline for a design description:

1. Synopsis

2. Other front matter

a. Related documents and specifications (those that are part of the product)

3. Design overview. Detailed block diagram of the software organization. This should

include the IO, communication, power management, sensors, drivers, control loops

and other subsections that will be described in detail in the rest of the document.

4. The states and modes of the software, their role, and state flow.

5. The software items (e.g. subsystems or major modules), and their key responsibilities.

6. Safety model, Self-check / self-protect functions, watchdog, prioritization

a. Storage and data integrity

b. Communication and data integrity

7. The interfaces to the software, including the data formats and sequences. This

includes storage, external and internal communication protocols.

8. Time keeping

9. Sensors, the signal chain and other engagement with hardware

10. Power management

11. Appendices:

a. Glossary, acronyms

b. References, resources, suggested reading

c. Identify 3rd party software used, and the responsibilities of each

19.1. SYNOPSIS AND FRONT MATTER

THE SYNOPSIS. A one or two paragraph synopsis of what the software’s role in the product is.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 40

THE RELATED DOCUMENTS & SPECIFICATIONS. This is a list of internal organization & project

standards, and design specifications, with a designator for each document. The designator is

to be used through the remainder of this specification to refer to the document.

19.2. THE GLOSSARY, REFERENCES

Next, prepare place holders for the common elements, such as the acronyms, glossary of

terms, and references. These are “living,” they will continue to expand and be added to

throughout the development. In good documentation the glossary can be extensive.

Note: I recommend the following be in the rear of the documentation, along with all the other

supplemental information.

THE ACRONYM AND GLOSSARY TABLES. Define all acronyms, terms and phrases. We have all

seen documents that include definitions for simple, common items (such as a LED), while not

defining specialized items (such as “adaptive linear filter,” or “hybrid turboencabulator”)

referred to heavily in a document. Don’t do this.

I recommend that the expansion of acronyms to its words be presented in a separate list from

the glossary definition of terms and phrases.

Tip: The acronyms and glossary are well suited for reuse in many projects. Make a stock

document with the most common terms and potted definitions to be included in each project.

THE REFERENCES, RESOURCES, SUGGESTED READING. The documents to list include data

sheets, industry and legal standards, communication protocols, etc. Include a designator for

each document. Use this through the remainder of this specification to refer to the document.

19.3. DESIGN OVERVIEW

Describe the role and responsibility of the software. Include the functions and features that

the software is responsible for providing.

Include a diagram summarizing the software design, with the major sections and their

interconnections. This may include a reference to external elements that it controls or

depends on. It should show the basic structure of the signal flow (both control signals and

information signals) and include a description introducing to how inputs are turned into

outputs. It should provide context and show key external elements.

State

Timers

Store

O
u

tp
u

ts

In
p

u
ts

Comm Display

Main

Loop

Figure 7: Basic flow

structure of the software

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 41

Provide a description of the main elements of the software design:

Element Description

element 1 Description of the element

…

element n
Description of the element

The external elements are:

External Element Description

element 1 Description of the element

…

element n
Description of the element

Note: this diagram (architecture) is often stylized and reused across products as a platform or

design style. Requirements may be written against an abstract model based on it.

19.3.1 Partitioning into a Two processor model

Consider separating the more stringent functions (such as safety critical functions) from the

main – but less stringent functions – by placing them into a separate processor.

Main

Supervisor
Shutdown

Split

ARM Event bus □

Dual-port memory □

UART □

CAN □

The second processor monitors condition and places the system into a safe state if the main

processor or system conditions leave a well-defined safe operating state.

20. STATE AND BEHAVIORS

The interfaces and behaviors of the software should be documented. These are its inputs,

outputs, how it interacts with the rest of the system, and responds to events. This would

include any states of the software or interaction with it, along with the state flow, and how it

reacts to specific events.

20.1. SUMMARIZE THE ERRORS, THEIR CLASSIFICATION AND RESPONSE

The description of states and behaviors should include a description of the error states of the

software and the hardware it controls, and how it behaves in those states. Instead of trying to

enumerate each error, uses parallel classifications or categories of errors:

 Critical errors being errors (or faults) that cause the controller to enter a safe state. Non-

critical errors do not necessarily enter the safe state.

 Recoverable are ones that be cleared, perhaps by user interaction or other event; auto-

recoverable errors may be cleared automatically when the underlying recondition is

Table 13: The

software design

elements

Table 14: The

external elements

Figure 8: Processor

with a supervisor

processor

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 42

removed; and unrecoverable errors are not allowed to be cleared. (These are

independent of whether or not the error is critical)

Faults are conditions of the MCU or other hardware component, when it is not able to

perform its functions to specification.

Next include a table with the following elements

 Error category or classification, or error identifier. (Use the error identifier in cases that

are more specific than a categorization, and the error has been documented in elsewhere

in this high level design document.)

 Whether it is critical or not,

 The response,

 How to recover from the error condition, and

 A description of the error.

20.2. SAFE STATE

Next, include a description of the safe state.

21. DIVISION INTO MODULES

There should be a solid discussion of how the software is structured and implemented in a

modular manner. This design approach breaks the development down into manageable

chunks. It also supports unit testing of the software.

The software system has 5 major module groupings, based on the kind of work they do, or

information they organize:

Communication

Stack

Application

Logic

Instrumentation

Subsystem

Storage

Subsystem

Microcontroller

Specifics

This is only if the diagram did not include them.

The modules

Group Description

application logic The logic specific to the application and its requirements.

communication This group provides the communication stack to send and receive information remotely.

instrumentation This includes functions for gathering signals and applying the control logic

microcontroller

specifics

This includes the drivers and chip-specific software, helping improve portability by supporting

the designs uses of alternative microcontroller.

storage

subsystem

This logs relevant information, and configuration information. Critical data is store in a manner

to prevent data loss if there is a loss of power.

Figure 9: Major

functionality groups

Table 15: The

functionality groups

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 43

21.1. KEY RESPONSIBILITIES

The modules should be allotted functionality, and their key responsibilities should be listed.

These provide a statement of design and may be used to trace to the detail design, and

integration tests.

A key responsibility is like a capability requirement, specifying a functionality that a module

is responsible for. A responsibility is not necessarily traced to any requirement or other input.

A module should have at least one, but (at this level) less than 5.

21.2. PROPERTIES AND BEHAVIORS

The visible properties and behaviors of the module should be documented. These are its

inputs, outputs, internal logic, how it interacts with the rest of the system, and responds to

events. This would include any states of the module or interaction with it, along with the state

flow, and how it reacts to specific events.

21.3. CRITICAL ELEMENTS

Highlight or emphasize elements that are “critical” and need special precaution. Some

elements that may be critical include:

 Elements that are necessary to achieve the safety functions of the product

 Elements mandated by the standards (being certified against) as critical

 Elements that are depended upon by those elements or are necessary to prevent

systematic faults of any critical element.

The critical elements should get extra review steps and have more documentation. While not

all critical elements may be known in the first pass of the design, experienced designers will

be able to anticipate many that will be.

Separate the software into different categories:

 The stringently defined area that is focused on addressing the functions critical to the

safety requirements in those standards. The risk management, process, techniques

and testing are most focused on this category of software

 The other elements of software that whose functionality does not present a safety risk

(since the above category is responsible for that function).

This separation allows the other elements to be construction in a less stringent manner. For

instance, a high degree of assurance may not be tractable or even meaningfully definable (in

the present state of the art).

22. REFERENCES AND RESOURCES

DI-IPSC- 81432A, Data Item Description: System/Subsystem Design Description (SSDD),

1999 Aug 10

http://everyspec.com/DATA-ITEM-DESC-DIDs/DI-IPSC/DI-IPSC-81432A_3766/

DI-IPSC-81435A, Data Item Description: Software Design Description (SDD), 1999 Dec 15

http://everyspec.com/DATA-ITEM-DESC-DIDs/DI-IPSC/DI-IPSC-81435A_3747/

ISO/IEC/IEEE 42010:2011, Systems and software engineering — Architecture description.

Note: this supersedes IEEE Std 1471-2000

key responsibility

behaviours

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 44

[This page is intentionally left blank for purposes of double-sided printing]

“Computer architecture, like other architecture, is the art of determining the needs of the user of a structure

and then designing to meet those needs as effectively as possible within economic and technological

constraints.”

– Fred Brooks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 45

CHAPTER 8

Software Architecture

Risk Analysis

 This chapter provides an initial template for software architecture risk analysis.

23. SOFTWARE ARCHITECTURE RISK ANALYSIS

The outputs of a software architecture risk analysis include:

 A table mapping the software requirements to the architecture element that addresses

it. This table may have been produced by another activity and is only referenced.

 A list of software risks, acceptability level, and their disposition

 A criticality level for each hazard that can be affected by software

 Recommended changes to the software architecture, software requirements

specification, programmable system architecture, etc. For example, actions required

of the software to prevent or mitigate the identified risks.

 Recommended Verification & Validation activities, especially tests

The steps of a software architecture risk analysis include:

1. Identify the architecture element that addresses each requirement. This may have

been produced by another activity and is only referenced in the output.

2. Examine the risks of errors with values

3. Examine the risks of message capacity

4. Examine the risks of timing issues

5. Examine the risks of software functionality

6. Examine the risks of software robustness

7. Examine the risks of software critical sections

8. Examine the risks of unauthorized use

9. Recommendations for rework

23.1. STEP 1: IDENTIFY THE ARCHITECTURE ELEMENTS THAT ADDRESS EACH
REQUIREMENT

Go thru each of the software requirements and list the architecture elements that address it.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 46

23.2. STEP 2: EXAMINE ALL VALUES FOR ACCURACY

Identify all the elements of the architecture – sensor 1, sensor 2, actuator, motor, calculations,

operator inputs, operator outputs, each parameter received, etc. For each of these, create a

copy of Table 4 (“Value accuracy risks”) and populate it with respect to the architecture.

Identify the least acceptable risk for each applicable condition.

23.3. STEP 3: EXAMINE THE MESSAGES CAPACITY

This step examines the ability of the software to achieve its objectives within the hardware

constraints.

Identify all the messaging elements of the system – I2C sensor, task 1, etc. For each of these,

create a copy of Table 7 (“Message capacity risks”) and populate it with respect to the

architecture. In reviewing each condition, identify the least acceptable risk for each

applicable condition. Strike inapplicable conditions.

23.4. STEP 4: EXAMINE THE CONSEQUENCES OF TIMING ISSUES

This step examines the ability of the software to achieve its objectives within the constraints.

Identify all the input elements of the system – button #1, frequency input, I2C sensor, task 1,

user input, etc. This list should include elements those receive messages and send messages.

For each of these elements, create a copy of Table 16 (below) and populate it with respect to

the architecture. Strike inapplicable conditions and add other identified conditions.

Condition Hazard, likelihood & severity

input signal fails to arrive

input signal occurs too soon

input signal occurs too late

input signal occurs unexpectedly

input signal occurs at a higher rate than stated maximum

input signal occurs at a slower rate than stated minimum

system behavior is not deterministic

output signal fails to arrive at actuator

output signal arrives too soon

output signal arrives too late

output signal arrives unexpectedly

processing occurs in an incorrect sequence

code enters non-terminating loop

deadlock occurs

interrupt loses data

interrupt loses control information

In reviewing each condition, identify the least acceptable risk for each applicable condition.

Table 16: Timing

capacity risks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 47

23.5. STEP 5: EXAMINE SOFTWARE FUNCTION

This step examines the ability of the software to carry out its functions.

Identify all the functions of the system – the operations which must be carried out by the

software. For each of these elements, create a copy of Table 17 (below) and populate it with

respect to the architecture. Strike inapplicable conditions and add other identified conditions.

Condition Hazard, likelihood & severity

Function is not carried out as specified (for each mode of operation)

Function preconditions or initialization are not performed properly

before being performed

Function executes when trigger conditions are not satisfied

Trigger conditions are satisfied but function fails to execute

Function continues to execute after termination conditions are satisfied

Termination conditions are not satisfied but function terminates

Function terminates before necessary actions, calculations, events, etc.

are completed

Hardware or software failure is not reported to operator

Software fails to detect inappropriate operation action

In reviewing each condition, identify the least acceptable risk for each applicable condition.

23.6. STEP 6: EXAMINE SOFTWARE ROBUSTNESS RISKS

This step examines the ability of the software to function correctly in the presence of invalid

inputs, stress conditions, or some violations of assumptions in its specification.

Create a copy of Table 10 (“Software robustness risks”) and populate it with respect to the

architecture. In reviewing each condition, identify the least acceptable risk for each

applicable condition. Strike inapplicable conditions and add other identified conditions.

23.7. STEP 7: EXAMINE SOFTWARE CRITICAL SECTIONS RISKS

This step examines the ability of the system to perform the functions that reduce risks.

Create a copy of Table 11 (“Software critical section risks”) and populate it with respect to

the architecture. In reviewing each condition, identify the least acceptable risk for each

applicable condition. Strike inapplicable conditions.

23.8. STEP 8: UNAUTHORIZED USE RISKS

Create a copy of Table 12 (“Unauthorized use risks”) and populate it with respect to the

architecture. In reviewing each condition, identify the least acceptable risk for each

applicable condition. Strike inapplicable conditions.

Table 17: Software

function risks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 48

23.9. STEP 10: RECOMMENDATIONS FOR REWORK

Summarize each of the identified conditions with unacceptable risk levels (e.g. of “medium”

or “high”). These mandate rework, further analysis, and/or Verification & Validation

activities.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 49

CHAPTER 9

Detailed Design

This chapter is my tips to make a detailed design that is clear, and eases reviews.

 Detail design is a family of documents

 Diagrams and design decomposition into modules

 Organization of the modules

 Examples of common subsystem designs

 Firmware and subsystem test support

Recall that the detailed design is actually an ensemble of documents that work together. This

chapter will focus on the main detailed design. Later chapters focus on the others.

24. DIAGRAMS AND DESIGN DECOMPOSITION INTO MODULES

Detailed design begins with the elements of the architecture and expands upon them. This

introduces the architecture, perhaps with diagrams, structural and connective elements. The

detailed design breaks out the design into major areas and then into modules (with specific

function) for that area. This is classic structured decomposition.

The detailed design description should include several diagrams to explain the design:

 Structural network diagram showing information, and control flow between functional

units

 Stratified diagram of modules, showing the level of abstraction and logical

dependency

24.1. STRUCTURAL NETWORK DIAGRAM

Include a structural diagram summarizing the software design, with the major structural

elements and their interconnections. This may include references to external elements that it

controls or depends on. The diagram should include a description introducing how inputs are

turned into outputs. It should show the basic structure of the signal flow (both control signals

and primary signals). The diagrams also provide context, showing key external elements.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 50

State

Timers

Store
O

u
tp

u
ts

In
p

u
ts

Comm Display

Main

Loop

This type of diagram should provide a mental map of the design

 Make the design understandable

 The modules are functionality (or actors) and are represented as boxes

 The links show the connectivity and flow of signal/info/data

Provide a description of the main elements of the structured network diagram:

Element Description

element 1 Description of the element

…

element n Description of the element

Example of the structural elements may include:

 Libraries

 Functionality built into libraries

 Code layers

 Threads / processes / tasks

The external elements are:

External Element Description

element 1 Description of the element

…

element n Description of the element

Figure 10: Basic

structure diagram of the

software

Table 18: The

structural diagram

elements

Table 19: The

external elements

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 51

24.2. DESIGN CRITERIA FOR UNITS

Each unit should perform a distinct task or provide a distinct function:

 It should be easy to define its input-output behaviour; it should perform specific,

limited functions

 Each unit should be isolated, manage their state/memory and have low complexity

24.3. THE SIGNAL/DATA

The connective links should be described (and annotated) to provide information about:

 The signal/info/data and the mechanism of representing the signal/info/data

(format/encoding/structures/another object)

 The mechanism of the link: is the link shared variables? A message queue?

Semaphore(s)?

 The mechanism of transporting the represented data over the link

Example connective elements include:

 Variables

 Buffers

 Queues

 Mailboxes

 Semaphores

The later when used in a multitasking environment

Family of related modules, usually connected by signal flow

Divide up into sufficient detail. Modules, names of each element, names of actors, other

24.4. STRATIFIED DIAGRAM OF MODULES

The stratified diagram is organized into layers with the lowest closest to the mechanics;

successively higher layers present more abstraction. This form of diagram shows much less

of the structure, and little of the connectivity. The signal & control flows are up and down;

both the inputs and outputs are at the bottom, making the flow is not as clear as with a

structural diagram. This form of diagram usually shows the dependency – what module

depends on another’s function to deliver its own.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 52

Media Access
(files)

Digital Out

FOO
(files)

Buffer
(file)

UART

Storage
(files)

Analog Out Analog In

Thresholding
(files)

Debounce
(files)

State Map
(files)

Stats
(files)

Counter
(files)

Time Keeping
(files)

Filter
(files)

Correction
(files)

Digital InDrivers

External/Board
peripherals

Common
modules

Application
specific

FOO
(files)

FOO
(files)

FOO
(files)

FOO
(files)

Most of the lower layers are specific to the hardware… and thus limit portability of the

application to other hardware. However, they may be used in other projects. The upper

layers are often specific to the application and/or product… and so they may are less likely to

be reused as well.

25. REFERENCE SUBSYSTEM DETAILED DESIGNS

Standard Functionality of Common Modules:

 RTOS threading

 Instrumentation control loops

 Storage IO stacks

 Communication IO stacks

 Storage system type designs

 Motor control type designs

 Platform

 Application

 Board

 Chip specific

 Core specific

Specific fields often settle on a structure/schema which may be reused for a domain-specific

class of problems. This simplifies the process and can offer advantages:

 Solid underlying theory

 Well-design test cases or easy to define in/out test cases

 Solid reference model

Figure 11: Basic

stratified diagram of the

software modules

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 53

Use specific computing strategies; design architecture that does these kinds of functions well.

In an embedded system the design must divide the work the work between:

 Interrupts

 DMA and peripherals

 Threads (aka tasks), in the use of an RTOS or other OS.

25.1. RTOS AS AN ORGANIZING TOOL AND TO PROTECT TIME

Is an RTOS used? An RTOS provides a specific kind of structure and breakdown into threads

that communicate. Major areas and COTS/SOUP are given their own thread.

RMA prioritization: Scheduling, frequency

GUI thread

Main thread

Level

Communication

Stack

(TCP/IP, etc)

Level

Communication

Stack

(TCP/IP, etc)

High level

Communication

Stack

The GUI and communication stacks are separated out into their own threads.

 Not safety critical and may be unreliable or inconsistent.

 Must be isolated in time and space from the rest of the system. By placing these into

their own thread – prioritized appropriately – the other functions (especially critical

functions) can proceed even if the GUI & communication is “slow.”

This is true of many other COTS/SOUP subsystems.

The device drivers may be separated out into one or more threads as well. This is common if

there is a communication interface (including a communication interface to storage

peripherals)

HardwareDevice task
Interrupt

Device

thread

Semaphore

Event to queue

Hardware

Shared memory

Interrupt

 The interrupt service routine communicates with its thread by posting a semaphore (usually)

or other similar event object.

Figure 12: Basic

Separation into threads.

Figure 13: Separation

into threads & interrupts

to drive hardware

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 54

A thread has the following basic structure

Thread

Process event /

message

Block

Input

Message &

Sempahore events

Message /

event

Dequeue

Message

Call

Thread

Threads typically have an input message queue. The thread blocks on semaphore and

message queue events. When it wakes, it dequeues the event, takes action and goes back to

sleep. It may post semaphores and messages to other threads, possibly indirectly as a result of

framework/library/system calls.

Note: queues – message queues, IO queues, and so on – must be bounded in size.

Has concurrency protections (i.e., mutexes and interrupt enable/disable) for resources.

Signal main loop or threads (tasks) from ISR or other threads

 The number of different threads. (Note: a thread doesn’t have a regular clock, as it

progresses based on the OS choices of availability.)

25.2. INSTRUMENTATION

This section gives a template for instrumentation subsystems. A typical design looks like:

D
eg

lit
ch

 &

D
eb

ou
nc

e

Filte
r

C
on

ve
rt

to

bo
ol
ea

n

Application

specific

logic

Timers

Variables

(State)

Conve
rt

to
 u

nits

Map to

states

Analog

Outputs

Analog

Inputs

Digital

OutputsDigital

Inputs

P
ol
yn

om
ia
l

C
or

re
ct
io
n

Each of the modules is “simple” input / output, so there is rarely any need to have them be in

separate tasks/threads, and queues between them. The work of each can be done in a low,

bounded amount of time. A task can run a loop like so to drive the inputs and outputs to each

of the modules:

Figure 14: Basic thread

structure

Figure 15: Typical

instrumentation

structural diagram

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 55

Set boolean outputs

Set linear outputs

Wait until event

Apply application specific

logic

Sample boolean inputs

Correct inputs

(calibration)

Filter the inputs
Convert linear to boolean

with hystersis

Deglitch / Debounce

Preserve State

Convert values to ones with unitsMap to states

Sample linear inputs

The time thru the loop is more or less constant / bounded. Takes the same steps each time.

The order must be a topological ordering of the directed graph.

25.2.1 Division into modules

Consider the AUTOSAR organization of its HAL to name the microcontroller relate

peripheral modules and other instrumentation modules. (For example, Chibios HAL did this).

The main types of modules include:

 Digital input (DIn). This can be one or more modules. One module may gather

boolean inputs from the microcontrollers GPIO inputs. Other modules may gather

boolean inputs from memory mapped input; I2C, SPI and other remote peripherals

(e.g. port expanders), and so on.

 Digital output (DOut). This can be one or more modules. One module may drive

boolean outputs from the microcontrollers GPIO outputs. Other modules may gather

boolean outputs from memory mapped output; I2C, SPI and other remote peripherals

(e.g. port expanders), and so on.

 Analog input

 Analog output

 DMA

Each of these modules would get its own documentation.

Figure 16: Typical

instrumentation loop

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 56

25.2.2 DMA for gathering sampled linear inputs and linear outputs

The linear inputs and outputs – often called analog inputs and outputs on a microcontroller –

might be performed by a DMA.

ADC

Channel

Memory

Address

ADC / DMA Ring

Thread
Interrupt

Handler

Interrupt

Handler

DAC

Channel

Memory

Address

DAC / DMA Ring

For the linear inputs, the ADC samples a sequence of channels, and the DMA places them

into a circular memory buffer. For the linear outputs, the DMA takes bytes from a circular

memory buffer and applies them to a sequence of DAC output channels.

Figure 17: DMA driven

linear input and output

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 57

25.3. COMMUNICATION STACK

This section gives a template for communication subsystems. Such a design might look like:

Peripheral device
driver

Decrypt Encoding: add any
error checking,
correction, and
encryption.

Decompress Compress

Error detection &
correction

IO Queue

Manage
fragmentation of the
message

Manage
fragmentation of the
message

IO Queue

Encode the messageDecode the message

25.3.1 DMA for communication

The communication input & output might be performed by a DMA. (The output is well

suited as the software is control of how much output is to be sent, and can delegate this to the

DMA easily)

Thread
Interrupt

Handler

Memory

Address

Communication / DMA Ring

Figure 18: Typical

communication stack

Figure 19: DMA driven

communication

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 58

25.4. STORAGE

This section gives a template for storage subsystems. Such a design might look like:

Storage peripheral
device driver

Decrypt Encoding: add any
error checking,
correction, and
encryption.

Decompress Compress

Error detection &
correction

IO Queue

StorageStorage

IO Queue

Block Cache

Error correction
Predictive moving &
marking of failed
blocks

Manage
fragmentation of the
message

Decode into storage
block

Manage
fragmentation of the
message

Encode the message

Figure 20: Typical

storage stack

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 59

25.4.1 DMA for storage communication

The storage input & output might be performed by a DMA. (The output is well suited as the

software is control of how much output is to be sent, and can delegate this to the DMA easily)

Thread
Interrupt

Handler

Memory

Address

Storage / DMA Ring

Flash memory structures

 Page erase

 New structure, generation count

 Strike out previous generation

25.5. MOTOR CONTROL

This section gives a template for motor driver subsystems. Such a design typically looks like:

Inverse

Clark

transform

Clark

Transform

Park

Transform

Inverse

Park

transform

Speed /

position

feedback

Speed

Control

Current

Measure

Position

feedback

(Hall Cell)

PWM
Driv

ers
Motor

Digital

Input

ADC

Most are transformations to different representations and acting on that, until it is in a

representation that can drive hardware.

26. ERROR AND FAULT DETECTION AND HANDLING

The design document should include a description of errors, how they are detected and the

response.

 Check parameters – range and conditions

 Check the error return or flags of called procedures and work structures. Use

appropriate timeout values.

 Check intermediate values / conditions, such as from calculations

 Library exceptions

 Use canary methods to find buffer overruns

 Use canary methods to find stack overruns

 Hardware exceptions and faults

Some of these may be described in further within their software item, if that makes more

sense; if so, point to those subsections.

Figure 21: DMA driven

storage

Figure 22: Typical field-

oriented control of motor

speed

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 60

26.1. CHECKING PARAMETER VALUES

PROCEDURES check their parameters at the start and reserve any resources they will need to

complete the task. If the checks do not pass, or resources cannot be reserved, the procedure

should trigger the test harness, raise a software breakpoint, (optionally) log a trace-point and

exit early with an error code.

AT THE COMPONENT LEVEL, messages are checked for correctness and sensible values.

The parameter value range and constraints are typically specified at the interface level.

26.2. LIBRARY ASSERTS, EXCEPTIONS

Many of the firmware libraries perform checking, and signal errors by called a procedure, like

“assert”. By supplying this error procedure, the software can signal an error condition. The

error procedure should trigger a software breakpoint (to trigger the debugger) and handle the

error, perhaps by putting the machine into a safe state and halting.

27. STORAGE SUBSYSTEM

Description the storage subsystem, how it is used, errors are detected. Below are several

common ones.

27.1. FIRMWARE AND INFORMATION STORAGE

The microcontroller module includes a non-volatile storage (e.g. Flash) to retain the program,

and non-volatile information. The software should include features to test it, such as the

ability to read program storage, and/or perform a CRC check on it.

The firmware should include a means of setting, clearing, and reading the information storage.

27.2. STORAGE TESTS

The firmware can confirm that the RAM is functional with the conventional “marching” tests.

To describe just one test, I will sketch the “walking ones” test below. The steps are:

1. In the storage, area set all bits, save one, to zero. The single bit should be set high.

2. Check the storage area contents match the expected value.

3. Repeat the above for each bit.

4. Repeat the above, but with most bits set high, and the single bit set low.

This test checks that each bit in the storage area can hold clear and set values; that a bit does

not clear or set other bits in the storage area. Note this is a test that the storage area works as

intended, not that the access is done on a bit level.

The storage area is non-volatile – it retains the intended values after power has been removed

from the system. To check this non-volatile property:

1. Setting the values in non-volatile area to known, but non-default values.

2. Remove power. The duration should be for a time longer than it takes internal power

caps to deplete.

3. Applying power

4. Checking that the storage area holds the expected values.

“This application has

requested the

Runtime to terminate

it in an unusual way.”

– An actual Microsoft

error message

See Mikitjuk et al for a

description of

marching memory

tests and what they

diagnose

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 61

27.3. MEMORY SEGMENTATION

Working memory should be segmented by the criticality classification of its use or owning

module. Canaries should be placed between segments to detect over run/under run between

segments.

An example partitioning of memory into segments is shown below:

Canary

Stack

Task 1

(initialized variables)

Canary

Task 1

(initialized variables)

Canary

Task n

(uninitialized variables)

Canary

Task n

(uninitialized variables)

Canary

Interrupt stack

Canary

27.4. BUFFER OVERFLOW CHECK

BUFFER ADDRESSING CHECKS. Buffers should have canary values before and after the buffer

area to aid in identifying stack overflow and underflow events. Buffer over and under runs

are very common form of software bug, this will help detect such out-of-bounds modification:

Buffer

Canary

Canary

To catch overflow

To catch underflow

The canary values should be checked frequently, such as during a timer tick, or every run thru

a main loop. This is typically done using a struct with variables before and after an array.

Use different canary values (0xdeadbeef, 0xc0fecafe, etc) to help id what’s going on.

Figure 23:

Segmentation of

memory with canaries

Figure 24: Overview of

buffers with canaries

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 62

27.5. STACK OVERFLOW CHECK: CANARY METHOD (AKA RED ZONES)

Stacks should be monitored for overflow conditions by checking that the memory surrounding

the stack has not been modified.

Stack Area

Canary

Canary

To catch underflow

Grows down

To catch overflow

Software should place canary values on either end of the stack – or stacks, when an RTOS is

used. Many RTOS’s and compilers or linkers automate this.

FINDING UNDERFLOWS AND OVERFLOWS are a matter of checking each of the buffers to verify

that that the canary’s still have valid values at the start and end.

THE ADVANTAGE of this approach is that it is easy to implement, easy to understand, and has

low overhead costs on the executing firmware.

THE DRAWBACK is that it still possible to miss overflows and underflows: the stack pointer can

be incremented by large amounts, completely skipping over the canary area.

28. FIRMWARE UNIT AND SUBSYSTEM TEST

This section discusses design for unit tests of the software modules and networks of modules.

This approach allows:

 Testing of individual software elements

 Testing of test conditions that are too tedious, hard, or speculative to replicate

 Test boundary conditions, roots, pools, and other fiducial values with precision

 Test sequences of interactions that are too tedious, hard, or speculative to replicate

 Testing that error returns and error conditions are appropriately handled

 Regressions tests before software release

 Greater examination and validation of the internal software state

 Debugging the above scenarios

28.1. DESIGN TO BE DEBUGGED

Some design tips to improve debuggability:

 Think creatively about what could go wrong and what would be needed to figure out

that it has gone wrong. (Too often, designs assume that nothing will go wrong.)

 Provide readable and resettable event counters to track the occurrences of key events.

Figure 25: Overview of

the stack structure with

canaries

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 63

 Provide read access to view the current state of key input and output signals, such as

digital input pins and analog signals.

 Provide read access to variables that shows the current state of each state machine.

 Save a copy of the timer / counter value to a separate variable each time an event

occurs. These values could be placed into a trace buffer or read access to them could

be provided.

 Function units – often procedures and modules – should check their parameters and

internal state. (Do not use assert.) Instead clean up, increment an error count, add

trace-point or breakpoint, and return a sensible / appropriate error.

 Measure performance counters for key functions and units. This can help identify

inconsistent behaviour.

Read access should be interpreted to include support for a debugger watching the values but

can also include providing the values in a trace system, shared memory with a monitor, and

via communication stack. The communication stack can be used in implementing the

software tests.

28.2. SUBSYSTEM TESTS

The starting point to test the design is the software design description. The software design

description should include structural diagrams of the modules, {a stacked (or a layered) of the

modules}, a detailed list of the software modules, the signals that flow thru the software, and

how to refer them.

Software

Unit Test

Unit(s)

under

test

Hardware

The test concept is to

1. Identify the path or slice of these modules to test,

2. Develop a test to initialize and control just those software elements. This can be by

injecting a stimulus into it using a DAQ. Note the projects electronic design should

allow injecting into well-defined points, such as the board test points, or connectors.

3. Inject a stimulus into the slice. This can be sending a signal into the microcontrollers

input or invoking the function.

4. Check that the results produced are correct. This can included checking that the

results produced at each stage of the along the path are correct, or that the rest of the

system operates as expected. The output may be directing the results to a GPIO

output, such as a DAC or digital output.

Figure 26: Unit and

subsystem test

configuration

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 64

When planning the tests, one would start with tests for a single unit under test. Later tests

would expand to more modules & layers, using (where possible) only units that have already

been tested. The electrical hardware tests test the lowest layer hardware interfaces.

28.3. SOFTWARE SUPPORT FOR WHITE-BOX TESTING

The design documentation for software modules (and structural group) should include a

section that describes how to test the module (or stack of modules). This section should

include a description of:

1. How to observe when the module is performing work, when, and for how long

2. How to confirm that the module performs its intended function

3. How to find and test the limits of the unit performing its intended function

Many of the modules will have an accessible test interface. This many let one query its state.

However, some procedures within the module will not be easily accessible in this way. The

next section describes support for testing them.

28.4. TESTING INTERRUPT HANDLERS, TIMERS, AND PROCEDURES

This section provides an approach to answering the following test questions:

 How does one test that an interrupt (or timer) was raised?

 How long was it from the point that the timer was start to when it was raised?

 How does one test that a procedure was called?

 How frequently?

 How long is it the procedure execution duration?

One approach is to employ a GPIO signal to indicate entry and/or exit from a procedure. An

interrupt or timer handling procedure would be configured to raise a digital output signal

when the procedure is entered and lower the signal when the procedure exits. This signal can

then be observed with an oscilloscope or DAQ on the test bench.

DAQBoard PC

Oscilloscope
Signals to/from Board

ISR GPIO Blip

This can be extended to many other, non-interrupt related, procedures and key points in the

software implementation.

28.5. TESTING THAT THE SOFTWARE IS NOT OVERSUBSCRIBED

To test that the software should not crash or become overburdened, no matter the input, the

above techniques can be applied. Sending a high rate of switch signals – or other signals –

should show negligible impact on the activity blips of the brake actuator. Blips of interest

 CPU “system tick” timer

Figure 27: White box

test station

configuration

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 65

 Run loop execution

 Interrupt handler

 Key timed events

The test procedure would configure the item to blip the GPIO signal. The blip should be

regular, and bounded. A long gap between is a concern and is evidence that the CPU is

overloaded, interrupts are disabled too long, or the instruction engine is halted.

It is a concern if the line stays high too long as well: the item under test takes too long to

execute, a higher priority interrupt or thread has occurred and impaired its execution time.

29. REFERENCES AND RESOURCES

Blahut, Richard E; Digital Transmission of Information, Addison-Wesley, 1990

DI-IPSC- 81432A, Data Item Description: System/Subsystem Design Description (SSDD),

1999 Aug 10

http://everyspec.com/DATA-ITEM-DESC-DIDs/DI-IPSC/ DI-IPSC-81432A_3766/

IEC 61508-7: Overview of techniques and measures 2010

Part 7 outlines a good number of resources on how to approach the design process

Labrosse, Jean MicroC/OS-II: The Real-Time Kernel, 2nd Ed, CMP Books, 2002

An excellent example of the design a RTOS, with great attention given to detailed

design, including algorithms.

29.1. CLEANROOM SOFTWARE ENGINEERING AND BOX STRUCTURED DESIGN

Hevner, A; Harlan Mills; Box-structured methods for systems development with objects, IBM

Systems Journal, V32 No2, 1993

Harlan Mills write extensively on a process he called Cleanroom Software

Engineering. His approach to structure decomposition, which he called Box-

structured design, is a clear description on the process.

CMU/SEI-96-TR-022, Richard Linger, Carmen J. Trammell, Cleanroom Software

Engineering Reference, Software Engineering Institute, Carnegie Mellon University, 1996

Nov

29.2. INSTRUMENTATION & SIGNAL PROCESSING

Garrett, Patrick H. Advanced Instrumentation and Computer I/O Design: Real-Time System

Computer Interface Engineering, IEEE Press, 1994

Redmon, Nigel Biquad Formulas 2011-1-2

http://www.earlevel.com/main/2011/01/02/biquad-formulas/

Smith, Steven W “The Scientists and Engineer’s Guide to Digital Signal Processing,”

Newnes, 1997, http://www.dspguide.com/

SPRU352G, MS320 DSP Algorithm Standard, Rules and Guidelines, Texas Instruments, 2007

An excellent example of detailed design documentation, and a good reference on

microcontroller facing design of a signal processing framework.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 66

29.3. MOTOR CONTROL

ST Microelectronics, BRSTM32MC “Motor control with STM32 32-bit ARM-based MCU for

3-phase brushless motor vector drives” (brochure)

ST Microelectronics, DM00195530 “STSW-STM32100 STM32 PMSM FOC Software

Development Kit Data brief” #025811 Rev 2, 2014 Mar

Texas Instruments, BPRA073, Field Orientated Control of 3-Phase AC-Motors, 1998 Feb

Texas Instruments, SPRA588, Simon, Erwan; Implementation of a Speed Field Oriented

Control of 3-phase PMSM Motor using TMS320F240, 1999 Sept

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 67

CHAPTER 10

Communication

Protocol Template

The documentation of a communication protocol is usually standalone. This documentation

should include:

 The kinds of activities that can be done using the communication interface

 The interaction sequences

 An overview of the security design, what it protects and how

 An overview of the communication protocol stack

 The link message formats (data structures)

30. COMMUNICATION PROTOCOL OUTLINE

AN OVERVIEW, which includes:

 Name, designators, or unique identifiers for the protocol

 A synopsis of the functions that it is responsible for

 The roles of the communicating parties

 A description of the transport methods organized in OSI or TCP/IP-like layers.

INTERACTIONS. This section describes the typical interactions that would take place between

the communicating parties.

THE PHYSICAL LAYER(S). This section describes the configurations employed with the

different types of interconnections.

THE LINK / DATA LINK LAYER(S). This section describes the addresses, the detailed framing –

such as the types of frames – and other differences employed with the different types of

interconnections. For instance, this includes the signal rate.

THE FRAME FORMAT for each type of link/transport media. This accommodates the unique

needs of the different interconnect types, while working toward a common abstraction.

THE MESSAGE FORMAT covers the information sent back and forth and how it is encoded. The

messaging is usually in a command and response style. (This often corresponds to the

application layer).

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 68

31. INTERACTIONS

This section describes the typical interactions that would take place between the

communicating parties. This is often flow diagrams.

31.1. READING A BIG BLOB OF DATA

The XYZ data is a binary “file” stored on the slave. The intended algorithm to retrieve the

XYZ data is:

1. Read the size of the XYZ data, in number of bytes. For convenience, this will be

called “size.”

2. Set the current offset (which will be called “offset” here) to zero.

3. Send a read command with the read offset to the new offset value. The slave will

send the data corresponding to that area of the XYZ data. This is synopsized in the

diagram below

Master Slave

Read Command

Status ok

Data response

4. The packet received will be an offset – this should match the one set – and a count of

bytes of XYZ data. Place these bytes onto the end of the local copy of the XYZ data.

5. Increment offset by the number of bytes of data received.

6. If the offset is less than size, continue with step 3.

Figure 28: Sequence for

reading portion of the

XYZ data

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 69

The figure below captures this process:

Start

Fetch XYZ Data size

(as size)

No

offset += # data bytes

received

Is the offset

>= size?

Done

Yes

Receive the record (and

store it)

Send read command with

offset set to XYZ data Offset

Offset = 0

32. THE DIFFERENT TRANSPORT MECHANISMS

The protocol is often possible to be conveyed over several different underlying interconnect

methods. This section describes the detailed framing and other differences employed with the

different types of interconnections.

Figure 29: The XYZ

data retrieval algorithm

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 70

For example:

Command &

Response

Link Management

B
lu

e
to

o
th

L

E
C

h
a

ra
c
te

ri
s
ti
c

Data

S
e

ri
a

l

L
e

n
g

th

C
o

n
tr

o
l Data

C
o

m
m

a
n

d

C
R

C

S
y
n

c

W
e

b

S
o

c
k

e
ts

C
o

n
tr

o
l Data

C
o

m
m

a
n

d

C
A

N

L
e

n
g

th

C
o

n
tr

o
l Data

C
R

C

Fragmentation &

Reassembly

L
e

n
g

th

C
o

n
tr

o
l

Data

C
o

m
m

a
n

d

C
R

C

 Bluetooth LE

 Serial communication, such as RS232, RS485, VCOM (over USB), or RFCOMM

(over Bluetooth). This is a common protocol linking different microcontrollers

together.

 WebSockets is a message-oriented protocol used on networks, such as available with

Wifi, Ethernet, or Cellular data.

 CAN is a message-oriented protocol. This is a common protocol linking different

microcontrollers together.

The communication links vary in the features they offer:

 Bluetooth LE handles the delivery, error detection, encryption, authentication, and

much of the timeout of exchanging message frames. Bluetooth LE handles errors

signaling, and the reference to the object being queried or acted on.

 Serial handles the delivery of the message. The software must provide mechanisms to

detect errors, and lost messages. Serial has no encryption, authentication, or other

security measures.

 WebSockets handles delivery, error detection, encryption (if a TLS module is

employed), and much of the timeout of exchanging message frames. The software

must provide its own error signaling and means to reference the object being queried

or acted on.

 CAN handles the delivery, and error detection of exchanging message frames. The

software must detect damaged or missing messages, as wells as frames received in a

non-sequential order.

Figure 30: Logical

overview of the

Communication stack

overview

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 71

32.1. THE COMMON LINK FIELDS

The link structures share many of the following fields:

 The length field is the number of bytes (octets) that follow the length byte, including

the CRC field.

 The control field distinguishes between fetching a value, storing such a value,

confirming the receipt of one, and so on. {A detailed explanation of these should be

included below}

 The status field indicates success, any error, an indication, or notification. {A detailed

explanation of these should be included below}

 The command field is which element to modify and corresponds directly to a

Bluetooth LE attribute / characteristic.

 The data fields are variable length, and optional.

 The CRC is the check value of message to help detect errors. {Of course, this is the

place to describe in detail the parameters of the CRC, what is fed into it, the format of

the value and so on.}

32.2. SERIAL FORMAT

RS232 serial interconnections lack the CRC checks, the start of packet, packet length and

other information. This information is often added in by protocols using a serial interconnect.

This section should describe that.

The commands/queries and responses have the following format

Command / Query Response

L
e

n
g

th

C
o

n
tr

o
l Params

C
o

m
m

a
n

d

C
R

C

L
e

n
g

th

S
ta

tu
s Value

C
o

m
m

a
n

d

C
R

C

S
y
n

c

S
y
n

c

Other things to describe:

 What to do if the message doesn’t pass CRC check? Ignore it?

 What about header field doesn’t make sense?

This section should include the relevant (custom) configuration of the physical layers. Bit

rate, number of bits, parity, etc.

33. TIMING CONFIGURATION AND CONNECTION PARAMETERS

This is the section to discuss the varied connection parameters and timing of recurring events

on a per interconnect protocol basis.

34. MESSAGE FORMATS

This section should describe format and interpretation of the messages that go between the

parties. What the fields are, how they are encoded, their units/dimension, scale, range, etc.

Figure 31: The format of

the command/query and

response messages

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 72

The example here is for a command-response mode but can be adapted to other modes of

communication.

It is easiest to specify the types as format, size, and sign types that match the C Coding Style

(see Chapter 16), with a little-endian encoding (or big endian if you prefer). The command

and responses then provide

34.1. READ DATA

This command is used to retrieve a segment of data.

Command Code {the hex value for the command goes here}

Characteristic UUID {the hex for a Bluetooth LE characteristic UUID goes here}

Modes Read, Notify, Indicate {this is more useful for Bluetooth LE}

Response Code {the hex value of the response message}

Signature offset× nBytes → MemStore → offset × bytes
nBytes

Command Size 4

Response Size 4-252

Equivalent Procedure Foo_data_encode()

Note: not all of these fields are necessary, merely an example to show possibilities.

34.1.1 Command

The parameters of the command body are:

Offset Size Type Parameter Description

0 2 uint16_t offset The offset to retrieve the data from

2 2 uint16_t size The number of bytes to retrieve

34.1.2 Response result

The parameters for the Read response message:

Offset Size Type Parameter Description

0 4 uint16_t offset The offset of data

4 varies uint8_t[] data The retrieved data

The intended use is to read a segment of the data buffer. The typical read sequence is below:

Table 20: Summary of

the Read Data

command

Table 21: Parameters

for Read Command

Table 22: Parameters

for Read Response

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 73

Master Slave

Read Command

Status ok

Data response

The sequence for an invalid read command is show below:

Master Slave

Error Status

Read Command

35. A NOTE

To aid test management give identifiers to each of the commands, responses, and their fields.

36. REFERENCES AND RESOURCES

DI-IPSC-81436A, Data Item Description: Interface Design Description (SDD), 1999 Dec 15

http://everyspec.com/DATA-ITEM-DESC-DIDs/DI-IPSC/DI-IPSC-81436A_3748/

Figure 32: Read

command sequence on

success

Figure 33: Read

command with error

response

http://everyspec.com/DATA-ITEM-DESC-DIDs/DI-IPSC/DI-IPSC-81436A_3748/

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 74

[This page is intentionally left blank for purposes of double-sided printing]

“By the way, nobody likes your Doxygen docs. Okay? Nobody even uses your Doxygen docs. They are

horrible. I do not care how much time you spend. Doxygen is an entire system devoted to convincing people

they have written documentation..”

– Elicia & Chris White

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 75

CHAPTER 11

Programmer

Documentation

This chapter discusses the programmer documentation generated by doyxgen or docfx.

 Detail design is a family of documents

 Organization

37. DETAILED DESIGN DOCUMENTS

The programmer documentation is often made with tools such as doxygen or docfx to format

source code comments, augmented with structuring markdown files. This type of document is

a supplement to the main detailed design.

This type of generated document is often large and unread – it rarely can be read like a well-

edited text. But it is possible to make it readable.

Projects can benefit from using this (partly) automated output. The trick is that it should also:

1. Make an “online” version that is easily (and usefully) searchable.

2. Generate a PDF for review and design history file.

38. ORGANIZATION

Introduce the Organization. This section outlines the organization of the modules and

implementation:

 Module Prefixes

 Source configuration files

 File system layout

 File grouping for a module’s implementation

 Configuration points

The modules. Order the namespaces, classes, units/modules, structure, procedures etc. in the

way that makes the most sense for reading the documentation.

Appendices. the following are typically in the appendices:

The following are typically in the appendices:

 Compiler Configuration, flags, etc.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 76

 Analysis tool (e.g. Lint, MISRA C checks, etc.) configuration including which checks

are enabled and disabled.

 Linker configuration & Linker scripts

 The software configuration settings.

 Files employed in the software.

38.1. MODULE PREFIXES [C]

{It is arguable whether this information should in the high-level design, or in the appendices.

I find it helpful as guidance to the development}

Each C module has a separate prefix (C++ modules would use the namespace and class name

features). The table below describes the prefixes employed:

Prefix Module

AIn The analog input module, including ADC sampled values, etc.

AOut The analog output procedures

App Application procedures and application specific logic

BSP Board specific package related procedures

DIn The digital inputs are GPIO logic signals.

IIR Infinite impulse response filters

Poly Polynomial correction of signals

Time Time-keeping related

Tmr Timer related

UART UART, a hardware serial interface

38.2. SOURCE CODE CONFIGURATION FILE(S)

The firmware is configurable, allowing changes in the electronics design and specific features

of the application. The settings for the other three configuration files are described in

appendix TBD.

 Source Code

AppConfig.h

BSPConfig.h

Firmware

BSPStub.c

The BSPStub.c provides the linkages the microcontroller register, such as the digital input and

output data registers. (These differ between microcontroller families, and sometimes within

Table 23: Summary of

C module prefixes

Figure 34: The

configuration of the

production firmware

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 77

them; but every microcontroller has some form of these registers). This also provides

resource sizing and buffers related to these inputs.

THE CONFIGURATION HEADER FILES are used to enable (or disable) features and size the

remaining resources. The features that can be enabled have a control macro suffixed with

_EN. For example, to enable feature XYZ:

#define XYZ_EN (1)

Alternatively, to disable it:

#define XYZ_EN (0)

The board specific defines are in a file called BSPConfig.h. The application or framework

features are in a file called AppConfig.h.

38.3. CONFIGURATION POINTS

Build Configuration, in .h and .c files

 Application specific build configuration

 Board specific build configuration

 Chip specific build configuration

 May use configuration and structures separating these allow the source to be built as a

library shared across many targets; with the configuration structures provided per

target board.

38.4. FILE SYSTEM LAYOUT

Note: The software development plan typically provides the information in this section.

The directory structure is a set of nested folders. Some folders are shared between projects;

some are unique to this project. The top-level folders are:

Folder Description

doc The documentation for this project

Components
The vendor documentation for the components used in this project or evaluated for it

src
The project source code

Release
The released application image, suitable for download to the unit

Within the project source code, the folders might be:

Folder Description

CSP Holds core specific modules

IO
Holds support for non-communication input put, such as GPIO, PWM, etc.

Power
Holds support for measuring the battery level

Sensors
Support for sensors such as accelerometers, and temperature sensors

STM32
Holds STM32 microcontroller specifics

win
Windows specific files

Table 24: Top-level

Folders in the project

file directory

Table 25: Source

code folders in the

project file directory

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 78

38.5. FILE GROUPING FOR A MODULE’S IMPLEMENTATION

A module may be implemented by one or more source files.

.

Declares the interface to the module

.c .c

.c .c

-int.h

.h

The module’s implementation

Declarations internal to the module.

 One or more .c files that implement the module – it is better to break down a module

into groups of short files rather than one large file a thousand lines or longer.

 The module may have other .h files (suffixed as –int.h) that are for use only within the

module. These should not contain information intended to be used elsewhere.

 A module has one (or more) .h files that declare the procedures, variables, and macros

that other modules may use. This file should not have ‘internal’ only information;

that is, it should not include information that other modules should not use.

39. CHALLENGES

Doxygen and Markdown, while popular for their simplicity, has several drawbacks that

frustrate projects:

 Inconsistent & Poor Formatting. The generated documentation can sometimes be

inconsistent or poorly formatted; different platforms and tools implement the

Markdown slightly differently, leading to inconsistencies. These create confusion and

frustration, requiring many iterations to resolve.

 Loses Information. Doxygen tools frequently lose or drop key description information.

It isn't clear that this is the tools fault. This too wastes time, creating confusion and

frustration.

 Not an Authoring Environment. Doxygen lacks a previewer, while Markdown has

previewers, each implements the Markdown slightly differently, leading to

inconsistencies in how documents are rendered.

 Excessive Complexity. The MkDocs configuration, css files, MkDoxy code and jinja

templates are complex and require a lot of fiddling to get it to work properly.

 Hard to Structure. Doxygen and Markdown are bottom up. It is hard and laborious to

organize the documentation fragments into any cohesive structure.

 Poort Maintainabilty. The process of maintaining Doxygen formatting and such adds

large, unnecessary overhead to the development process.

The resulting text is often neither cohesive nor cogent. It is a less-than-ideal choice for

documentation, especially for complex projects that require robust formatting and features.

Figure 35: How .h and

.c files related to a

module

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 79

CHAPTER 12

Software Module

Documentation

Template

The documentation of the software modules goes into the “programmer documentation”

documents, rather than the main detail design document. This most often achieved thru

skillful use of markdown and doxygen. This is my template for the resulting module

documentation.

 Detailed design outline

 The overview of the module

 The software interface documentation

 The detailed design (internals)

 The configuration interface

40. DETAILED DESIGN OUTLINE

I use the following template for the documentation of each software module:

AN OVERVIEW, which includes:

 Name of module

 A synopsis of the functions that it is responsible for

 Diagram and description of the module's main organization. This isn’t intended to be

the design diagram; it is intended to show where it fits into the bigger design.

SOFTWARE INTERFACE DOCUMENTATION. This section describes how software would

communicate with the module system using procedure calls.

DETAILED DESIGN. This section describes the detailed internal structures and procedures used

within the module.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 80

THE TESTING section describes how to test the module.

41. THE OVERVIEW SECTION

The overview section introduces the module, and its role. Optionally include a diagram that

shows the where the module fits in overall, and how the other modules interface to it:

Comm

Stack
Instrumentation

Loop

Foo module

Microcontroller

(GPIO)

Procedures: Foo_update()

State Variables: Foo_values[]

Config Variables: Foo_index[]

Foo_numChannels

Foo_numRegisters

Foo_registers[]

The diagram is usually vertically organized. The upper layer communicates with the rest of

the system; the lower layers works with the hardware or more specific work tasks. Between

the nodes for the different modules (and hardware elements) are callouts synopsizing the

procedures, variables, and IPC structures that act as the links between the nodes. The typical

major interfaces include:

 Interface that the system can use to configure the module.

 Interfaces that the rest of the stack or software system may interact with the module

 Interfaces from the module to the underlying layers, or the lower layers of the stack

that it interacts with.

42. THE SOFTWARE INTERFACE DOCUMENTATION

The software interface section describes how software would communicate with the module

system using procedure calls. This includes a description of the procedures, structures, the

respective parameters of these, calling sequences, responses, timing, and error handling.

A good software interface is…

 Easy to learn / memorize

 Leads to readable code

 Hard to misuse

 Easy to extend

 Sufficient or complete for the tasks at hand

The overview should describe:

 INITIALIZATION, which is passed information about how the microcontroller is

connected to the board, and which of the internal resources that should be used.

 DATA ACCESS. The procedures that get data from the module or provide data to the

module

 CONFIGURATION. How the module is configured to use lower-level resources, and the

parameters (such as data rate) in how it should use the resources. (Included where

appropriate.)

Figure 36: Overview

of the Foo module

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 81

After the overview there should be:

 Description of operations

 Diagram of interaction, algorithm

 The #defines and enumerations used in the software interface

 The data structures employed by the software interface

 The variables provided by the software interface

 The procedures (and their parameters) provided the software interface

42.1. CALLING SEQUENCES FOR THE INTERFACE

All interfaces should provide a BNF-style description of the acceptable calling sequences, or

phrases, for the API. For example:

::= open [optional_calls] (read | write | lseek)* close;

or

::= open mmap (MemoryOp | mincore | lseek | read | write) munmap close

 | open shmat (MemoryOp | mincore | lseek | read | write) shmdt close ;

The conventions for such BNF-like statements include:

 Parameters aren’t specified in the rules

 Only specify calls related, usually in a context. That is, specify only the API related

to an ‘instance’ (object, file channel, etc.) from its creation and manipulation through

its destruction.

 Items in italic refer to other rules

 Items in parenthesis form a regex-like set of alternatives

 Items in braces are optional, the equivalent of a null option in an alternative grouping

 A sequence of calls is only valid if it is accepted by the rules outlined. Under the

rules of software validation, the software is erroneous if it is possible that the software

executes a calling sequence not recognized by the BNF.

 Keep the number of rules small, but reflect the real constraints on the calling sequence

42.2. DEFINES

This section describes the #defines used in the software interface.

#define CMD_READ (0xA000u)

The read command value.

#define CMD_WRITE (0x2000u)

The write command value.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 82

42.3. ENUMERATION TYPE DOCUMENTATION

This section describes the enumerations used in the software interface.

enum ABC

This enumeration is such and such, used for so and so.

42.4. DATA STRUCTURE DOCUMENTATION

This section describes the data structures used in the software interface. The table below

synopsizes the data structures:

Structure Description

Foo_t This structure is used to track info

Foo_t struct Reference

This structure tracks the hours of operation.

Field Type Description

secondsElapsed uint32_t The number seconds since the start of operation

prevSeconds uint32_t The number of seconds of operation that were logged

startTime uint32_t The time that the operation was started.

42.5. VARIABLES

This section describes the variables in the software interface. The table below describes the

variables provided by the module:

Variable Description

Foo_errorCount The number of errors encountered

Foo_successCount The number of successes encountered

Table 26: Foo

Structures

Table 27: Foo _t

structure

Table 28: Foo

variables

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 83

42.6. CLASSES

The table below describes the classes employed in the module:

Class Parent Description

Foo An abstract base class to do some interesting things.

Foo class Reference

This is an abstract class intended to do some interesting things.

Field Type Description

someField ItsType Describe the field

someOtherField

Method Description

isOutOfDate () Checks to see if the foo bar is out of date.

unload() Unloads the foobar from memory.

Table 29: Module

classes

Table 30: Foo class

structure

Table 31: Foo

methods

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 84

42.7. PROCEDURES: SYNOPSIS

This section introduces the procedures used in the interface. The table below describes the

modules procedure interface:

Procedure Description

Foo_update() Called to update the state of the module each time step.

Foo_write() Write a data block to the device

42.8. PROCEDURE DOCUMENTATION

This section describes procedures that the module exports.

void Foo_update(void)

This updates the internal state of the module with each time step, and prepare output results.

Parameters:

 none

Returns:

 none

This should describe the behaviour of the procedure, its algorithm, or other steps that it may

take.

Err_t Foo::write (void* address, uint8_t* buffer, uint16_t length)

Write a data block to the device

Parameters:

 address The address within the device to store at

 buffer The buffer holding the data to write; this must hold length bytes

 length The number of bytes to write

Returns:

 Err_NoError The data was successfully written

 Err_Address The address is not a valid memory page

 Err_Timeout The operation did not complete timed out

 other Other access error

This should describe the behaviour of the procedure, its algorithm, or other steps that it may

take.

Table 32: Foo

interface procedures

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 85

43. THE DETAILED DESIGN SECTION

The detailed design section describes the detailed internal structures and procedures used

within the module. This includes a description of the procedures, structures, the respective

parameters of these, calling sequences, responses, timing, and error handling:

 Diagram(s) breaking down the module

 Description of operation, such as the main functions of the module, any threads and/or

interrupt service routines

 Diagram of interaction, algorithm

 Detailed design info

 The #defines and enumerations used within the module

 The data structures employed by the module

 The variables internally employed in the module

 The procedures (and their parameters) within by the module

 The files employed in the module

Most of these sections follow the same format as used in the software interface.

{Optional} The diagram below synopsizes the organization of the Foo module:

Procedures

Synopsis

Procedures :

Files : Foo.c

Variables :

Structures/Types:

Init

Configures the Foo module

Procedures : Foo_init()

Files : Foo.c

ISR

Services the hardware

interrupts

Procedures :

Files : Foo_IRQ.c

Variables :

Structures/Types:

Semaphores:

semaphore xyz

Variables:

variable name

buffer[]

Files: Foo_Cfg.h

Variables: var1

var2

Procedures:Foo_init()

Main systems
Procedure:

Foo_update()

Foo_write()

43.1. INTERRUPT SERVICE ROUTINES

This section should introduce and describe the interrupt service routines. This should define

why they are called, what action they take, and how they interact with the rest of the system.

43.2. DEFINES

This section describes the #defines used internally.

same format as in the interface section

Figure 37: Detailed

module organization

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 86

43.3. ENUMERATION TYPE DOCUMENTATION

This section describes the enumerations used internally.

same format as in the interface section

43.4. DATA STRUCTURE DOCUMENTATION

This section describes the data structures used internally.

same format as in the interface section

43.5. CLASSES

This section describes the classes used internally.

same format as in the interface section

43.6. VARIABLES

This section describes the variables used internally.

same format as in the interface section

43.7. PROCEDURES: SYNOPSIS

This section introduces the procedures used internally.

same format as in the interface section

43.8. PROCEDURE DOCUMENTATION

This section describes the procedures used internally.

same format as in the interface section

43.9. FILES EMPLOYED IN THE MODULE

The table below describes the files employed in the module:

File Description

Foo.c The foo modules API procedures

Foo.c Public interface to the Foo module

Foo_cfg.h Public interface to the configuration of the Foo module

Foo_IRQ.h Header file describing the local interface to the Foo Interrupt service routine

Foo_IRQ.c The interrupt service routines.

Table 33: Module files

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 87

44. CONFIGURATION INTERFACE

This section describes the configuration of the module.

The configuration is usually defined statically, at build time. The main application defines

const variables with the values to configure the module. This allows a module to be reused in

many applications, without specifying the exact size of resources used or coupling to the

hardware

44.1. VARIABLES

The table below describes the BSP configuration variables provided to the module to

configure it:

Variable Description

Foo_numChannels The number of channels used by the module.

Foo_numRegisters The number of peripheral registers defined.

Foo_register[] The set of peripheral registers

45. THE TEST SECTION

The test section describes how to test the module. It should include a description of

1. How to observe when the module is performing work, when, and for how long

2. How to confirm that the module performs its intended function

3. How to find and test the limits of the unit performing its intended function

Planning the test:

 Start with tests for a single unit under test and expand to more layers.

 Different mechanisms of tests

The rest of the test section should focus on three different mechanisms for performing the

tests:

 The software-based tests are intended to catch coding and calculation bugs. These

checks typically cannot catch hardware interaction bugs, but they can do regression

checks on software and (some) hardware configuration bugs.

 Desk checks look at the actual system execution, probed by hand

 Bench checks are more automated checks, with software and hardware probes

Note: the test documentation is often placed in other documents. I find it beneficial to include

an outline of tests. It helps ensure that the design is focused on the testability of the module

(and module stack).

Table 34:

Configuration of the

Foo module

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 88

46. REFERENCES AND RESOURCES

DI-IPSC-81435A, Data Item Description: Software Design Description (SDD), 1999 Dec 15

http://everyspec.com/DATA-ITEM-DESC-DIDs/DI-IPSC/DI-IPSC-81435A_3747/

SPRU360E, TMS320 DSP Algorithm Standard, API Reference, Texas Instruments, 2007 Feb

An excellent example of describing how the modules, algorithms, and interfaces work

and are intended to be used.

“There's no substitute for documentation written, organized, and edited by hand.

Auto-generated documentation is .. worse than useless: it lets maintainers fool themselves into thinking they

have documentation, thus putting off actually writing good reference by hand. .. most of the time it's easier

just to read the source than to navigate the bullshit that these autodoc tools produce. About the only thing

auto-generated documentation is good for is filling printed pages when contracts dictate delivery of a

certain number of pages of documentation.”

– Jacob Kaplan-Moss

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 89

CHAPTER 13

Design Review

Checklists

This chapter provides checklists for use in reviewing the software designs (before

implementation proceeds too far):

 Design review checklist

 Detail design review checklist

See also

 Appendix G {xlink} for the Code Complete Design Review check lists

 Appendix H {xlink} for a rubric to apply in the reviews

47. DESIGN REVIEW

A software design review is intended to answer a basic set of questions:

1. How does the design address the specifications?

2. What are the major elements that make up the system?

3. How do these elements work together to achieve the goals?

A good design is:

 Simple

 Cohesive – Each unit has a single, clear responsibility with-out mix multiple unrelated

functionalities; it is a clear how they work together to serve a well-defined purpose.

 Feasible – the design can be implemented in a timely fashion

 Adaptable to other applications

 Dependable: no bugs, or unexplainable behaviour and can achieve long-lasting

operation

 Efficient: applies its key resources to useful work (skillfully)

47.1. STARTING

 Are the requirements sufficiently defined to create the high-level design (architecture)?

 Is the high-level design understandable?

 Are there terms or concepts introduced / defined before they are used?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 90

 Is the document free of slogans, hype and idiomatic terms? Remove: “KISS”, “Do Not

Repeat Yourself”, “Yak Shaving”, “inversion of control”

 Are the requirements realizable?

47.2. MODULES AND FLOWS

 Are the main areas of functionality explained?

 Are the main inputs and outputs described?

 Are the main modules or components (“software items) and their roles described?

 Does the architecture explicitly identify the key responsibilities of each software item?

Are they clear? Are they located in one place?

 Is a structural diagram showing the flows given?

 Are the main signal chains and logic flows shown and described?

 Are the roles of the signals and logic explained?

 Is the application logic discussed and outlined?

 Does it describe the approach to testing and diagnostics?

 Is the approach to power management outlined?

 Is data management outlined? Is the roughly what will be stored, whether it will be non-

volatile discussed?

 Is the communication outlined?

 Is the safety model discussed? Timeouts? Watchdog timers?

 Is the approach to software configuration (of features, parameters, etc) sufficiently

discussed?

 Is the approach to other IO described?

 Are the module namespaces or prefixes provided and described?

 Are the main file groupings provided and described?

47.3. NAMES

 Are the module names well chosen?

 Are the signals, and other object names well chosen? Are the names clear? Do the

names convey their intent? Are they relevant to their functionality?

 Is the name format consistent?

 Names only employ alphanumeric and underscore characters?

 Are there typos in the names?

48. DETAILED DESIGN REVIEW CHECKLISTS

48.1. BASIC FUNCTIONALITY

 Does the architecture sufficiently describe the software items so that a detailed design

can be developed?

 Does the detailed design match the overall design and requirements?

 What is the approach used to validate that the detailed design fulfills the architecture?

 Are the requirements sufficiently defined to create the detailed design?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 91

 Is the high-level design sufficient and agreed upon to support the detailed design?

 Is all the detailed design easily understood? Is it simple, obvious, and easy to review?

 Is the detailed design sufficiently detailed to create/update a work breakdown structure?

 …to create a schedule, down to half-day increments?

 Is the design sufficiently detailed to delegate work?

48.2. DOCUMENTATION

 Are all modules and interconnecting mechanisms documented?

 Do they properly describe the intent of the module?

 Is the module interface (procedures, data structure, sequences) documented?

 Are all parameters of the procedures documented?

 Is the use and function of third-party code/libraries documented?

 Are data structures and units of measurement explained?

 Have the submodules (e.g. subitems, units) been sufficiently identified?

48.3. DIAGRAMS

 Are block diagrams employed?

 Are the boxes labeled with their designator?

 Are the boxes connected?

 Do the diagrams show the flow of signals and external control?

 Code complexity measure is low (below set threshold)?

 Is there sufficient annotation on the connection to understand how they communicate?

Is this covered in the expository text?

 Are there sequence diagrams?

 Are there flow charts?

 Does the diagram text match the terms used in the exposition?

48.4. MAINTAINABILITY AND UNDERSTANDABILITY

 Is the design unnecessarily ornate or complex?

 Is the design appropriately modular? Would it be better with more modules? Fewer?

 Can any of the modules be replaced with library or built-in functions?

 Does the design have too many dependencies?

 Any changes to improve readability, simplify structure, and utilize cleaner models?

48.5. NAMES & STYLE

 Are the module names well chosen? Are they relevant to their functionality?

 Are the signals, variables, and other object names well chosen? Are the names clear?

Do the names convey their intent? Are they relevant to their functionality?

 Do the names of these objects use a good group / naming convention? e.g. related items

should be grouped by name

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 92

 Is the name format consistent?

 Do the names only employ alphanumeric and underscore characters?

 Are there typos in the names?

48.6. PRIORITIZATION REVIEW CHECKLIST

 Are all threads identified? These should be in a table summarizing them.

 Are the resource protecting mutexes identified? These should be summarized in a table.

 Are all of the interrupts and their sources identified?

 Has a Rate Monotonic Analysis (RMA) and dead-line analysis been performed?

 Have the task/threads and mutexes been assigned priorities, based on this analysis?

 Have the interrupts been prioritized based on a similar analysis?

 Have the DMA channels been prioritized based on a similar analysis?

 Have the CAN message been prioritized based on a similar analysis?

 Does the ADC use prioritization? Have the ADC priorities been set based on analysis?

 Have the Bluetooth LE notification/indications been prioritized based on a similar

analysis?

48.7. CONCURRENCY REVIEW CHECKLIST

 Are the protected resources (and how they are protected) listed?

 Are there resource missing mutexes to protect them?

 Is the acquisition order of locks/mutexes defined?

 Are the appropriate IPC mechanisms specified?

 Is the order of multiple accesses defined?

 How do interrupts signal threads? Which threads do they signal?

 Are there ways to reduce the blocking time?

48.8. CRITICAL FUNCTION / SUPERVISOR REVIEW CHECKLIST

Check that critical functions (e.g. Class B and C of IEC 60730) are suitably crafted:

 Does the detailed design identify the critical functions?

 Are the critical functions limited to a small number of software modules?

 Is the relation between the input and output parameters simple as possible?

 Is a power supervisor / brown-out detect employed? Should one be?

 Are self-tests and/or function tests performed before any action that depends on the

critical functions?

 Are periodic self-tests or functional tests performed? How do they work? Is a vendor

supplied module performing the test? Which one(s)?

 Is there a defined acceptable state for when self-check (or other functions) fail?

 Are the clock(s) functionality and rates checked?

 Is a watchdog timer is employed? Correctly? Does the design only reset the watchdog

after all protected software elements are shown to be live? An example of a bad design

would be to reset the watchdog every cycle thru a run loop.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 93

 Does the design describe where the watchdog timer may be disabled? Is this

acceptable?

 Is an external watchdog employed? Is the external watchdog handshake done only after

all of the software has checked liveliness? A bad approach is to use a PWM for the

handshake, as a PWM can continue while software has locked up or is held in reset.

 Is there a fail-safe and fail-operational procedure defined to bring the product to the

defined acceptable state? There should few such procedures (e.g. 1 or 2)

 Is there acceptable handling of interrupt overload conditions?

 Is the critical program memory is protected from modification? How? Hardware?

Software?

 Is the program memory checked for validity? How? CRC check? Hardware based?

Software?

 Is the stack checked for overflow? How?

 Is the critical data separated, checked, and protected? How?

 Are independent checks / reciprocal comparisons to verify that data was exchanged

correctly? How does it work? For example, how does it know that the correct device

and correct address within the device was modified or read?

 Are there possible partition violations from data handling errors, control errors, timing

errors, or other misuse of resources?

48.9. MEMORY HANDLING REVIEW CHECKLIST

Has the memory been partitioned in a manner suitable for Class B? i.e., does the software

isolate and check the regions?

 Does the detailed design outline good practices to prevent buffer overflows – bound

checking, avoid unsafe string operations?

 Are memory regions write protected?

 Is the memory protection unit enabled?

 What is the access control configuration?

 Is it appropriate?

Non-volatile storage:

 Does the design not overwrite or erase the non-volatile data that is in use? Or does the

design overwrite the most recent/good copy of the data?

 Does the design account for loss of power, reset, timeout, etc during read/write

operation? This should include checking supply voltage before erasing/writing non-

volatile memory, performs read back after write, and CRC data integrity checks.

 Are data recovery methods used? Will the design work?

 Does the design ensure that the correct version of stored data will be employed (e.g. on

restart)?

48.10. POWER MANAGEMENT REVIEW CHECKLIST

Power configuration for low power modes:

 Are power management goals defined?

 Are the target power performance characteristics/requirements defined?

 How will it enter the states?

 How will it exit the states?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 94

 Are the states of clocks, IOs, and external peripherals defined for the low power states?

 Is there a race condition in entering a low-power state and not being able to sleep or

wake?

48.11. STATES

 Are the states of the module(s) defined?

For each state:

 Is the role of the state described?

 Are entry conditions given?

 Is an exit condition given?

 Is the flow of the normal sequence written down? Is it understandable, and reasonably

implementable?

 Are any abnormal flow / exception cases defined?

48.12. NUMERICAL PROCESSING REVIEW CHECKLIST

Check for correct specification of numerical operations, such as might be used in signal

processing, kinematics, control loops, etc.:

 Is there a description of the numerical processing that will occur?

 Is the theory of operation (e.g. that forms the system of equations) sound?

 Is it numerically sound?

 Are the equations ill-conditioned?

 Is the method of calculation slow? Is the algorithm slow? Is floating point emulated on

the target platform?

 Would use of fixed point be more appropriate? Would float be more appropriate?

 Is simple summation or Euler integration specified? This is most certainly lower quality

than employing Simpsons rule, or Runge-Kutta.

 Floats and doubles are not used in interrupt handlers, fault handlers, or the kernel.

 The RTOS is configured to preserve the state of the floating-point unit(s) on task switch.

48.13. SIGNAL PROCESSING REVIEW CHECKLIST

Also apply numerical processing checklist.

 Is the signal chain described?

 Is the relation between the input and output of the signal chain simple? Or at least,

simple as possible?

 Is the sampling approach to linear signals (aka analog inputs) described?

 Is the description of sample acquisition time defined? Does it match with the hardware

design description and target signal? (e.g. input impedance, signal characteristics)

 Is the method for acquiring samples appropriate? If the processing requires low jitter, the

design should support this. For instance, a design that uses a DMA ring-buffer has low

variation, while run-loop or interrupt trigger can have a great deal of time variation.

 Is oversampling applied? Is the design done in a proper way?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 95

 Are appropriate forms of filter specified? Is an unstable form used? (Would the form

have ringing, feedback, self-induced oscillation or other noise? Note: IIR is unstable

only when the poles are outside of the unit circle.)

 Is the signal processing unnecessarily complex?

48.14. TIMING REVIEW CHECKLIST

 Is the sequence of interactions documented?

 Is the timing of interactions documented? Are the timeouts defined and documented?

 From the time the trigger is made to the action, what worst case round-trip? Include

interrupts, task switching, interrupts being disabled, etc. Is this timing acceptable?

48.15. TESTABILITY

 Is the design testable?

 Has the design been sufficiently decomposed to support unit testing?

 Is the interface clear enough to trace test cases to cover all the functionality?

 Are the interface interactions states documented sufficiently – it can be integration tested

with each entry/exit condition and state traceable to tests cases?

 Are the state flows sufficiently documented to test and trace?

48.16. OTHER

 Are there regular checks of operating conditions? Should there be?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 96

[This page is intentionally left blank for purposes of double-sided printing]

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 97

CHAPTER 14

Software Detailed

Design Risk Analysis

This chapter provides an initial template for software detailed design risk analysis.

49. SOFTWARE DETAILED DESIGN RISK ANALYSIS

The outputs of a software detailed design risk analysis include:

 A table mapping the software requirements to the detailed design element (e.g.

procedure) that addresses it. This table may have been produced by another activity

and is only referenced in the output.

 List of software risks, acceptability level, and their disposition

 A criticality level for each hazard that can be affected by software

 Recommended changes to the software design, software architecture, software

requirements specification, programmable system architecture, etc. For example,

actions required of the software to prevent or mitigate the identified risks.

 Recommended test Verification & Validation activities, especially tests

The steps of a software detailed design risk analysis include:

1. Identify the design elements that address each requirement. This may have been

produced by another activity and is only referenced in the output.

2. Examine the risks of errors with values

3. Examine the risks of message capacity

4. Examine the risks of timing issues

5. Examine the risks of software function

6. Recommendations for rework

49.1. STEP 1: IDENTIFY THE DESIGN ELEMENTS THAT ADDRESS EACH
REQUIREMENT

Go thru each of the software requirements and list the design elements that address it.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 98

49.2. STEP 2: EXAMINE ALL VALUES FOR ACCURACY

Identify all the elements of the design – sensor 1, sensor 2, actuator, motor, calculations,

operator inputs, operator outputs, each parameter received, etc. For each of these elements,

create a copy of Table 4 (“Value accuracy risks”) and populate it with respect to the

architecture. In reviewing each condition, identify the least acceptable risk for each

applicable condition.

49.3. STEP 3: EXAMINE THE MESSAGES CAPACITY

Identify all the messaging elements of the system – I2C sensor, task 1, user input, etc. For

each of these elements, create a copy of Table 7 (“Message capacity risks”) and populate it

with respect to the architecture. In reviewing each condition, identify the least acceptable risk

for each applicable condition.

49.4. STEP 4: EXAMINE THE CONSEQUENCES OF TIMING ISSUES

Identify all the input elements of the system – button #1, frequency input, I2C sensor, task 1,

user input, etc. This list should include elements those receive messages and send messages.

For each of these elements, create a copy of Table 16 (“Timing capacity risks”) and populate

it with respect to the design. In reviewing each condition, identify the least acceptable risk for

each applicable condition.

49.5. STEP 5: EXAMINE SOFTWARE FUNCTION

This step examines the ability of the software to carry out its functions.

Identify all the functions of the system; that is, the operations which must be carried out by

the software. For each of these elements, create a copy of Table 35 (below) and populate it

with respect to the architecture. (Strike inapplicable conditions)

Condition Hazard, likelihood & severity

Hardware or software failure is not reported to operator

Data is passed to incorrect process

Non-deterministic

Non-terminating state

Software fails to detect inappropriate operation action

In reviewing each condition, identify the least acceptable risk for each applicable condition.

The risk analysis shall illustrate how events, or logical combinations of events, can lead to an

identified hazard

An analysis shall be conducted to identify states or transitions that can result in a risk.

49.6. STEP 6: RECOMMENDATIONS FOR REWORK

Summarize each of the identified conditions with a risk level of “medium” or “high.” These

items mandate rework, further analysis, and/or Verification & Validation activities.

Table 35: Software

function risks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 99

50. SOURCE CODE RISK ANALYSIS

Note: Reviewing code is a broad activity that may emphasize for workmanship quality (is it

maintainable), can take the form of formal, prepared meetings (i.e. Fagan inspections), to

directed examinations. This only is about the specific analysis related risk analysis.

Note 2: This section is not written as an analysis. Rather it is more “inspect the code for

workmanship and make recommended changes.” That is not identifying risk very well.

The outputs of a software source code risk analysis include:

 Recommended changes to the source code, software design, software architecture,

software requirements specification, programmable system architecture, etc. For

example, actions required of the software to prevent or mitigate the identified risks.

 Recommended test V&V activities

The steps of a software source code risk analysis include:

1. Tool-based analysis

2. Examine the software for proper initialization

3. Examine the risks of timing issues

4. Examine the r software critical sections

5. Recommendations for rework

50.1. STEP 1: TOOL REPORTS

Tools.

 Tools that can inspect the source code for errors or misuse of the language employed.

 Management plan: All issues should be addressed. Exceptions should be explained

and have a secondary check-off.

50.2. STEP 2: IS THE SOFTWARE INITIALIZED PROPERLY?

The code is to be inspected for match with the design document, and reviewer experience.

 Is the processor set up properly – clocks / oscillators turned on properly, etc? Is the

processor power tree configured properly?

 Are the watchdog timers (or similar protective timers) set up properly and detect

enough unresponsiveness in the code?

 Is the processor properly configured for the designed priority levels? That is, are the

interrupts, ADC, DMA channel, and other priority levels

50.3. STEP 3: PROFIT!

The source code should be examined for data passing and control flow structure:

 Check for consistency in the data and control flows across interfaces.

 Check for potential partition violations caused by such occurrences as data handling

errors, control errors, timing errors, and misuse of resources

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 100

 Check that the scheduling requirements are met / meet the timing constraints specified

by the safety requirements / design.

 Check that the safety-related functions meet the timing constraints specified by the

safety requirements / design.

50.4. STEP 4: EXAMINE SOFTWARE CRITICAL SECTIONS

This step examines the ability of the system to perform the functions that address or control

risks.

For each of the safety requirements, inspect the code that addresses the requirement:

 Does the code completely address the requirement?

 Does it do so correctly?

Other checks

 The integrity of the partitions between supervisory, critical, and non-critical sections

of software.

50.5. STEP 5: RECOMMENDATIONS FOR REWORK

Summarize each of the identified issues, observations and recommendations

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 101

PART III

Source Code

Craftsmanship

This part provides guides for source code workmanship

 OVERVIEW OF SOURCE CODE WORKMANSHIP.

 C/C++ CODING STYLE used for C & C++ source code.

 CODE INSPECTION & REVIEWS. Describes code reviews.

 CODE INSPECTION & REVIEWS CHECKLISTS for reviewing source code.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 102

[This page is intentionally left blank for purposes of double-sided printing]

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 103

CHAPTER 15

Overview of Source

Code Workmanship

This part promotes good source code construction:

51. SOURCE CODE WORKMANSHIP

This part seeks to reduce bugs from language mistakes and mis-implementing the detailed

design. It presents coding guides and review tools. Guidelines and review are widely used to

help ensure that the software is:

 Safe – that the software can be used without causing harm,

 Secure – that it is resistant to attacks,

 Reliable – that it functions as it should, every time,

 Testable – that it can be verified at the code level,

 Maintainable – that it enables easy adaptation and medication,

 Portable – that it provides consistent functionality across all platforms

Source code should follow sounds practices. Some of these practices are covered in industry

guides, such as MISRA C. Chapter 16 gives specific coding guidance that the industry guides

do not cover. These guides provide direction to producing clear code, with a low barrier to

understanding and analysis.

Chapter 17 discusses review the resulting source code against the guides and the detailed

design to help ensure that the result has a good construction.

The source code should be reviewed (and otherwise inspected) against those guides, designs,

and against workmanship evaluation guides. The purpose of reviews is to examine quality of

construction – it is not an evaluation of the engineers, and it is looking for more than finding

defects. It is to get a second opinion on the implementation.

The review checklists & rubrics are complementary to the coding style; everything in one

should be in the other.

51.1. WHAT DOES GOOD CODE LOOK LIKE?

Good code is

 Well-structured. The code is consistent, simple, and neat, using accepted (or

mandated) practices.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 104

 Structured simply. It uses simple operations, with one action per line. It modularizes

effectively. It limits a function to fit one screen of code.

 Clean interfaces. It passes minimal data, reducing memory requirements and

increasing speed. It exposes only variables that are necessary. It minimizes

dependencies and confines processor dependent code to specific functions.

 Functional. It has been tested frequently, completely, and thoroughly. It uses a

layered approach to add the needed complexity.

 Well commented.

51.2. THE ROLE OF REVIEWS AND INSPECTIONS

The purpose of reviewing the work is to examine quality of construction (the workmanship).

(It is not an evaluation of the engineers.) Code review is looking for more than finding

defects. Reviews check that:

 The construction is consistent, and coherent

 That the style is easy to understand, and clear

 That the work is maintainable over time, by many people

 That it avoids known and potential defects

 Consistent execution

 Evaluate quality of construction

 Planning goals for schedule and quality

 Improve meeting quality goals

The reviews can also be used as an education for new team members.

Tools can be used to automate some of the checks, relieving some of the reviewer labor:

 Clang-format

 MISRA C checks

 CPPCheck

 Clang-Tidy

 Compiler tool warnings

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 105

CHAPTER 16

C/C++ Coding Style

This chapter describes the subset of C/C++ that will be used, and how to format and document

the source code.

 Coding style overview

 Naming

 Source code text formatting: code layout, braces, spacing,

 Documenting the code

 Conditional compilation

 Macros

 Namespaces, used to organize the code and provide some separation of 3rd party

libraries.

 Preferred types

 Storage organization, and access considerations, including concurrency.

 Structure of a procedure; control flow: conditionals, goto/label/return/break/continue

 Special cases and troublesome areas

The scope of this guide is the implementation – the source code – of a design, rather than the

design itself.

52. CODING STYLE OVERVIEW

A coding standard is used to promote understandable source code that is:

 Reliable: The code should consistently perform as intended, without unexpected

behavior. Robust programming practices are encouraged; unreliable ones

discouraged.

 Testable: The code should facilitate comprehensive testing.

 Cohesive, and Readable: Clear structure, naming and comments convey code intent,

making the design understandable by others, and reducing misinterpretations.

 Maintainable: The code structure and organization facilitate easy updates and

modifications, reducing the effort required for long-term maintenance and evolution.

 Portable: The code works the same across a variety of target environments.

 Consistency: The code should maintain a uniform look and style. Consistency

ensures understanding of intent across similar code structures.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 106

52.1. SOFTWARE LANGUAGE

The software for applications created with this guide are written in the ANSI C11 and a subset

of the C++23 programming languages.

Exceptions to these rules are permitted but must be justifiable.

Compiler specific behavior (also called “compiler defined behavior”) should be used frugally.

This includes extension from Clang, Keil, IAR, MDK, Microsoft, and GNU. Wrappers that

present functionality consistently to the program – but are implemented in terms of the

compiler defined behavior – may be used when other alternatives are not available.

Where possible, use standards that cover the language specifics. MISRA is one that goes into

great depth on the types, expressions, and other nuances of the language. It is well written

and reasoned. Being a standard, there are many tools that can automate checking for these.

Employ unit testing frameworks, in conjunction with tools such as address sanitizer and

thread sanitizer.

53. NAMING CONVENTIONS

This section consolidates the naming rules for the many kinds of objects that can exist. The

goal is a consistent naming convention to aid code readability, maintainability, and

collaboration. (Later sections will delve into specialized rules for each kind of object). The

principles are:

 Names should be descriptive, indicating the type of value, or action performed:

Examples: `ValidateUserInput()` `totalPrice_dollars`

 Use consistent terminology throughout the project to maintain understanding.

 Avoid using abbreviations in variable and parameter names unless they are widely

understood and add clarity.

 Do not use Hungarian notation.

 Most names should use camel case or pascal case, with lower case letters, capitalizing

acronyms and the first letter of each word.

Modules. (C module or C++ classes). Each module is named. Stick to standard to acronyms

and abbreviations for the module’s identifier.

Macro – Macro names are typically uppercase, with words separated by underscores.

Uppercase is not required, nor a good practice, but is common.

Example: ` VALUE_MAX`

Class, Structures, Enums, Unions, and similar:

 The first letter is upper case, aka PascalCase

 Do not use a suffix (that is, no “_t” or “Enum” etc at the end).

 When typedef’d:

o Same capitalization

o end with ‘_t’

 Tag (field) names – no special designation

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 107

o scalar and pointer should begin with a lowercase letter but may begin with an

uppercase letter.

Method and Procedure Naming Conventions:

 camelCase or PascalCase. Method names should use PascalCase (see capitalization

rules earlier), starting with an uppercase letter (unless otherwise specified).

Example: `CalculateTotalPrice()`

 Specific names

o `init()` for initialization of components or modules.

o `update()` for methods that update the state of components or perform regular

updates.

Variables

 Variables (parameter, locals, globals, fields, etc) names begin with a lower-case

variable.

“Private” use Methods, Procedures, and Variables:

 Use underscores at the end of names for items that are not intended to be used by the

rest of the application but must be externed. Prefer trailing underscores (to leading ones)

as the names sort in an alphabetizing listing better.

Units for Quantities

 Variables, macros, and procedures for quantities should have the unit at the end. An

underscore precedes the unit.

53.1. CONSTANTS

Constant numbers and numbers used to arbitrary represent state or enumeration – so called

magic numbers – are to be given meaningful names that represent their purpose, role or use,

and units. Use class enum, enum, const variables, or defines. Do not give numbers a name that

is a mere anglization of the digits or quantity. Not every number is magic.

Examples of wrong names: ZERO, ONE

53.2. C SPECIFIC

 Procedures, and exported variables are prefixed with their module identifier, followed by

an underscore.

 Prefix enum values with an identifier, followed by an underscore. The prefix should be

predictable from the enum name. For instance, an enum with type name of “Err_t” would

have a value prefix of “Err.”

53.3. MICROCONTROLLER SPECIFIC NAMING

Microcontroller families may have conventions around interrupt and fault handlers:

 The microcontroller fault (or exception)handler – name ends with _IRQHandler (matching

CMSIS guidelines)

 Interrupt service routines end in ISR

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 108

 “IRQ” is sometimes used for the interrupt handling routine, but most often used to design

the interrupt, its internal “number”, management – enabling/disabling, prioritizing, and

so on.

53.4. CONFIGURATION VARIABLES AND MACROS

The suffix for defines and variables (esp. in configuration files) are:

Suffix Description

_CNT For the number of instances.

_DEBUG For gathering extra information, not normally used in production.

_EN To enable or disable use of the feature, module, or hardware.

_MAX The maximum allowed value for the item.

_MIN The maximum allowed value for the item.

54. SOURCE CODE FILE FORMATTING

54.1. CHARACTER SETS

The files shall be in ASCII and UTF8.

Tab characters shall not be used in software source code. Indents shall use spaces, not tab

characters.

54.2. FILE GROUPINGS FOR A MODULES IMPLEMENTATION

A module may have many .cpp or .c files that implement the module – it is better to break

down a module into groups of relatively short files rather than one large file a thousand lines

or longer. The module may have other .h files (suffixed as –int.h) that are for use only within

the module.

.

Declares the interface to

the module

.cpp

.c

-int.h

.h

The module

implementation

Declarations internal to

the module.

.cpp

.cpp

The documentation distinguished between external interface (procedure and variables other

modules may use) and an internal one.

A module or subsystem may have many .c/.cpp and .h files that implement the module.

54.3. FILE NAMES

The file names should be prefixed with the modules prefix (if any).

Table 36: Suffixes for

Configuration Macros

and Variables

Figure 38: How .h and

.c files related to a

module

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 109

54.4. HEADER FILES

The interface for a module or subsystem is provided via .h header files; multiple modules may

employ the same header. It declares the types, procedures, variables, and macros for other

modules to use.

 This file should not have ‘internal’ only information; that is, it should not contain

information that other modules should not use. A practical exception is made for objects

that are necessary for successful compilation, such as C++ classes/structs which must

provide the private variables methods.

 This file shall not have an “-int” suffix.

Header files with a “-int” suffix (such as “Mem-int.h”) for use only by the module or

subsystem.

Header files should have the same name as the .c/.cpp file that it provides an interface for.

Header files should declare classes, struct, variables and procedures. It should not define

variables, class/struct objects, or non-inline procedures.

54.4.1 Guards

Header files (file ending with the extension .h) may have guard defines in the file, so the file’s

declarations/definitions are not made twice.

GOOD:

#ifndef MYSTUFF_H
#define MYSTUFF_H

…

#endif

RATIONALE. Some header files create include cycles, forever including each other. This

guard prevents the cycle of inclusion. Such a cycle is often a sign of poor planning; it is better

to resolve the include cycle and improve division of declarations to have acyclic

dependencies.

54.4.2 Extern declaration / procedure prototypes

Extern declarations and procedure prototypes are provided only in header files. (Not in

C/Cpp files). There is to be only one declaration of a variable, macro, procedure or any other

symbol.

Use of extern “C”. If a C++ header file needs to include a C function the ‘extern "C"’

directive is used to prevent the C++ name mangling that would otherwise occur.

54.5. FILE LENGTH

A file should be relatively short. A file shall be less than a thousand lines. A file should be

less than 500 lines.

A module or subsystem may have many source files that implement the module.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 110

54.6. TEXT FORMATTING

54.6.1 Spacing

Indentation should be 4 spaces; this is standard for most C/C++ code editors. It’s just easier

to work with the de facto standard. Exceptions:

 Code inside of ‘extern "C"’ and a namespace block stay at the same indentation level as it

would be outside of the; these do not increase the indentation level of code.

Spacing

 Use spaces around keywords, operators and colons.

 Use spaces after commas, and semicolons.

54.6.2 Line declaration a symbol (field, variable, enum value)

A line declaring a symbol (field, variable, enum value) should not start with a comma.

RATIONALE. This messes with doxygen.

54.6.3 Brace placement

Braces are on their own lines. Closing braces should be at the same column as the opening

brace. The exceptions are namespaces and extern “C” where the open brace goes on the end of

the line.

54.7. DOCUMENTED CODE

The source code must be documented completely. Tools will consolidate the documentation

into a form containing the information developers need to understand and use the interface.

Each procedure (or function, or method), macro, variable and type declaration must have

descriptive comments. Provide the documentation where the item is defined:

 Classes, structs, etc. are documented where they are declared, e.g. in the header file.

 Procedures and methods are documented in the file (c/cpp) if they are defined in (rather

than where they are declared). It is acceptable to have a copy of the documentation in

the header file, but no longer required. The copy must match exactly.

RATIONALE. Lessons learned over the years:

 When in the documentation is in the header file, the code is more difficult to review, and

more tedious to update the header documentation (and keep it consistent) with the code.

 People only read the main header file to get the overall design and only if it’s a

(relatively) small 3rd party module: a single file not more than few hundred lines. Huge

headers, with change logs etc. are just too much text. Multiple header files are just too

much muchness.

 Users of the library most likely will ignore the manual and look at an example.

54.7.1 File description (at top of file)

Files must have a brief description of the module, stating its purpose.

/**@file
 @brief Manages blinking functionality for display items.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 111

Do not fill in the file name. The file name is automatically filled in by the doxygen.

Files that define macros, or – outside of a namespace – defined types or declare

variables/procedures should have a detailed description; other source files should not. The

namespace and class descriptions have proven a better organization for the documentation.

Files providing macros or variables/procedures outside of a namespace must have a

description.

/**@file
 @brief Manages blinking functionality for display items.

 Detailed description of the module, its purpose, and how it fits into the
 overall architecture.
 */

54.7.2 Procedures and Macro documentation

The comments before a procedure (or function, or method) and macro should include

information about the use of the procedure. The comments should articulate the action of

procedure, how it is being done; explain why (implementation) choices were made. These

comments must contain:

 A capsule synopsis of the procedure’s intent.

 A description of each of the input parameters, including any requirements for the

parameter

 The specification of the return value, results, and output parameters.

 Changes to any global or shared data.

 A description of its function – what it the procedure does and its role. This often

should include details of the implementation.

Comments should not be placed between the procedure name and the opening brace.

54.7.3 Enum, structs, classes, and variables

The comments before an enum, struct, class, or type declaration should include

 A description about the intended use of the object

 Comments should not be placed between the name and the opening brace.

 Each field, and label should be documented

 The comments should be written in complete sentences.

54.7.4 Making lists

Don't use numerical markdown lists in the dioxygen comments. Doxygen will not produce

correct markdown output from them.

Do not use nested lists, as doxygen loses the list structure.

54.8. LONG LINES

When you split an expression into multiple lines, split it before an operator, not after one:

if (foo_this_condition && bar > win(x, y, z)
 && remaining_condition)

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 112

Try to avoid having two operators of different precedence at the same level of indentation. For

example, don’t write this:

mode = (inmode[j] == VOIDmode
 || GET_MODE_SIZE (outmode[j]) > GET_MODE_SIZE (inmode[j])
 ? outmode[j] : inmode[j]);

Instead, use extra parentheses so that the indentation shows the nesting:

mode = ((inmode[j] == VOIDmode
 || (GET_MODE_SIZE (outmode[j]) > GET_MODE_SIZE (inmode[j])))
 ? outmode[j] : inmode[j]);

55. CONDITIONAL COMPILATION

When adding conditional compilation, define a feature flag as 1 (to enable it) or 0 (to disable

it); the flag name should end a ‘_EN’:

In a header configuration file:

#define FEATURE_EN (1)

and in the code

#if FEATURE_EN
… some code …
#endif

RATIONALE. This style allows detecting a missing include, and misspelled feature flags.

When an undefined preprocessor symbol is used, the compiler will report the issue.

Do not use a “#define FEATURE” to enable a feature or “#ifdef” to tell if a feature is enabled.

Wrong:

#define FEATURE

#ifdef FEATURE
… some code …

#endif

RATIONALE. Use of #ifdef would silently make a wrong choice – if a file was accidentally not

included or there was a typo – with the intended option was not seen #define’d by the

compiler.

55.1. SPECIAL CLAUSES FOR DOXYGEN

Sometimes the doxygen documentation is within a conditional code block. Doxygen will skip

over this. To allow doxygen to analyze and include the documentation, the condition needs

an exception if it is for doxygen in the clause:

#if FEATURE_EN || defined(DOXYGEN)

56. MACROS

There are three “kinds” of macros discussed in this section:

 Macros that act as expressions,

 Macros that act as statements (possibly with control flow).

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 113

Note: this section doesn't discuss #defines of values and feature flags, such as those used for

configuration.

56.1. MACROS THAT ACT AS EXPRESSIONS

PRINCIPLE OF USE: #define macros that are (or act as) an expression must be wrapped in

parenthesis.

RATIONALE. The macro expansion can have unintended effects.

56.1.1 Examples of effects

The following provides an example of a bad case:

 #define MyMacro(x) 1L + x

 MyValue = 3L * MyMacro(v);

The above will expand to:

 3L * 1L + v

Rather than the intended expansion of:

 3L * (1L + v)

56.1.2 Macro parameters

PRINCIPLE OF USE: The parameters to #define macros must be wrapped in parenthesis [within

the macro body]

RATIONALE. The macro expansion can have unintended effects

EXAMPLES OF WHERE TO USE. The following example shows how the parameters are wrapped

in a parenthesis:

#define multipleAccumulation(m,b) ((m)*3L + (b))

EXAMPLES OF EFFECTS. The following example shows how the parameters, when not wrapped

in a parenthesis, can interact in unintended ways:

#define MyMacro(v) (v * 3)

local3 = MyMacro(local1 + local2);

This will expand to

local3 = local1 + local2 * 3;

Rather than the intended

local3 = (local1 + local2) * 3;

56.2. MACROS THAT ACT AS STATEMENTS

PRINCIPLE OF USE: #define macros that use complex expressions – those with statements, if-

then, whiles, etc – or code blocks must be wrapped in do{}while(0)

These macros must have parenthesis (even if there are no parameters).

RATIONALE. The macro expansion can have unintended interactions with other control

structures

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 114

56.2.1 Examples of effects

The following provides the first example a bad case:

#define BlipOn() if (blipPtr) *blipPtr = 1;
#define BlipOff() if (blipPtr) *blipPtr = 0;

if (myVar == 3)
 BlipOn();
else
 BlipOff();

Expands to the equivalent of

if (myVar == 3)
{
 if (blipPtr)
 {
 *blipPtr = 1;
 }
 else if (blipPtr)
 {
 *blipPtr = 0;
 }
}

Rather than the intended:

if (myVar == 3)
{
 if (blipPtr)
 {
 *blipPtr = 1;
 }
}
else
{
 if (blipPtr)
 {
 *blipPtr = 0;
 }
}

The following provides an example, where while’s can interact inappropriately with the

surrounding code:

#define WaitForSignalToGoLow() while (*input1)

 Used within code:

// Wait for signal #1 to go low and then set led on
WaitForSignalToGoLow();
*ledPtr = 1;

 This becomes

while(*input1)
{
 *ledPtr =1;
}

Rather than the intended:

while(*input1)
{
}
*ledPtr =1;

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 115

56.2.2 How to fix these problems

The body of these macros can be wrapped in do{…}while(0) statements. In the first example:

#define BlipOn() do{if (blipPtr) *blipPtr = 1;}while(0)
#define BlipOff() do{if (blipPtr) *blipPtr = 0;}while(0)

The example expands to the equivalent of

if (myVar == 3)
{
 do
 {
 if (blipPtr) *blipPtr = 1;
 }while(0);
}
else
{
 do
 {
 if (blipPtr) *blipPtr = 0;
 }while(0);
}

In the second example:

#define WaitForSignalToGoLow() do{while (*input1) ;}while(0)

The example expands to:

do
{
 while(*input1);
} while(0);
*ledPtr =1;

56.2.3 Other comments

There are two other mitigations for the problems in the example code:

1. The body for if, else, while, for, do, etc. should be wrapped in {}.

2. Avoid using macros with statements, conditionals, loops, etc.

57. NAMESPACES

Namespaces allow organizing the source code and prevent some potential integration issues

with 3rd party libraries.

 A single, top-level project namespace is used to prevent name conflicts with 3rd party

code, and organize the projects modules.

 All non-3rd party modules go in this namespace hierarchy.

 The module names can be clean – prefixes are no longer needed to prevent clashes.

The namespace convention used here is:

 namespace Project::ModuleName {
 }

or

 namespace Project::CSP::ModuleName {
 }

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 116

Where Project is the name of the namespace for the overall project (family of related repos),

and ModuleName is the particular unit of code.

Note: the opening brace goes on the same line as the namespace keyword.

Source files that use the module employ lines like the following at the top

 using namespace Project;

Or

 using namespace Project::ModuleName;

This seems to aid making the main code cleaner and easier to read.

`using namespace` is not allowed in header files.

57.1. A LITTLE BACKGROUND

Two of the tasks in software development are managing naming (of the software pieces) and

complexity. The simplest of programs needn’t worry too much about naming. But as the

software gets larger – more modules, procedures, variables, larger teams, and increased use of

3rd party modules – there is more to be done to keep it sane. Projects usually want:

1. A way to sensibly group module resources together,

2. Aids to keep others from using interfaces (procedures, variables, types) that are not

meant to be depended on or used by others,

3. Help to prevent procedure/variable names from colliding with other those from other

(sub)teams or in 3rd party libraries.

In C (and similar languages) the tricks are:

1. Declare some variables and procedures ‘static’ so that they aren't exported outside of the

module (thus won't collide).

2. Use prefixes to the names, based on their module. Good practice has preferred succinct

(if terse) prefixes.

3. Use structs to wrap the variables; this is rarely used with “single instance modules.”

In firmware, this often works well. And it works fine for small and medium size projects.

The drawback is that the name and struct tricks make the code harder to read, and complex.

A C++ namespace hierarchy – a top-level namespace, with several sub-namespaces

underneath – is generally expected. The top level protects against the 3rd party collisions.

The sub-namespaces are for modules.

57.2. USE NAMESPACES, ESP. INSTEAD OF STATIC METHODS, GETTER & SETTERS

Keep items local to a file using an anonymous name space, rather than being made static.

 Use namespace rather than a class/struct; Instead of passing object pointer (or

equivalent) around, even indirectly, uses the namespace to hide or control access. Doing

it this way has proven to have much less noise than the conventional alternatives.

 Use procedures in a namespace rather than static methods in a class.

 Use direct access to variables where sensible; use getters and setters sparingly, if ever.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 117

58. PREFERRED TYPES

This section is only for the selection of types (and qualifiers) to use, and the defining of types.

A later section will discuss the nuances of proper use of some types, and expressions of that

type.

Use proper, standardized C11 types, rather than new or ad hoc type names.

58.1. TYPEDEFS

Use typedefs sparingly. They should be used to reduce the amount of typing required to

declare a variable.

 Do not typedef a struct or class. (C++)

 Do not typedef a pointer.

 Use a ‘_t’ suffix for a typedef name, except for classes and structs.

58.2. ENUMS

Do not use a suffix for an enum name.

Use `enum class` for enumerations. (C++)

C:

 enum values shall be prefixed with an identifier relevant to the enumeration, followed

by an underscore, the specific name of the value. The case of the enum value is not

specified here. It is recommended that if the enum has tag name, and/or a structure

name that the prefix be predictable from it. For instance, an enum with type name of

“Err_t” would have a value prefix of “Err.”

C++

 Do not prefix the enum value name

58.3. UNIONS

Do not use unions.

58.4. BOOLEAN TYPES

Use stdbool and bool for boolean types. Do not create your own boolean type.

Use of a custom-defined boolean may be mandated if an unchangeable 2nd or 3rd party code

employs. If so, do cast this boolean or use implicit coercion.

58.5. CHARACTERS AND STRINGS

char should only be used to represent characters, and nothing should be assumed about its

sign. Characters might use char type, or a wider type, as appropriate.

Strings may use char const*.

Text strings should be zero-terminated UTF-8 strings without embedded nulls.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 118

58.6. NUMERICAL TYPES

58.6.1 Quantities

To represent a quantity, the following types, units, and naming are recommended:

Dimension Type Units Suffix Description

angle float radians _rad

count unt32_t _cnt The number of items.

distance float meters _m

duration timediff_t ms _ms The duration of something in milliseconds.

size size_t bytes bytes The size of something, in bytes. Avoid `int`
and `unsigned int` types for sizes.

size ssize_t bytes bytes When negative values are needed, such as
with error returns, etc.

speed float m/s

temperature float C _C

timestamp clock_t ms The timestamp of something using system
high-resolution clock.

timestamp time_t The timestamp of something can be
converted to local time, such as a calendar
date or time of day.

Do not use signed types for timestamps, durations, counts, etc. They are always non-negative.

58.6.2 Integer numbers

Integer types shall use types as outlined in the quantities section above and the table below;

these are C11 style, with all lower cases, and ‘_t’ suffix:

Size Signed Unsigned

8 bits int8_t uint8_t

16 bits
int16_t uint16_t

32 bits
int32_t uint32_t

Number literals are to use a suffix to match type. These suffixes are uppercase.

Wrong:

int I;
for (I = 1; I < 32; I++)
{
…
}

Correct:

uint8_t I;
for (I = 1U; I < 32U; I++)
{
…

Table 37: The preferred

types for quantity, by

dimension

Table 38: The preferred

integer type for a given

size

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 119

}

58.6.3 Floating point values

Do not use doubles.

See later section for a discussion of using floating point numbers in algorithms.

58.6.4 auto [c++]

The ‘auto’ type may be used with local and template variables.

58.7. POINTERS

Pointer should use the specific type, if known. A generic type should be void*.

Pointers are to be pointers to a const target, except where they explicitly will change the

referent.

 Use `nullptr` instead of `NULL`. (C++ only)

 Use `uintptr_t` and `intptr_t` if a pointer needs to be converted to an integer type or stored

in a variable that may be used as an integer.

o Do not use `int`, `long`, `unsigned`, `uint32_t`, etc. for pointer types.

When taking the difference of two pointers to compute the size in bytes, cast the pointers to

uint8_t const* or char const* first.

58.8. STORAGE CLASS

The register storage class shall not be used.

58.9. QUALIFIERS

Scope Qualifiers (e.g. static, extern) should always go before the thing they modify, not after.

Type qualifiers that control how a value may be modified:

 Use `consteval` where possible for constants, expressions, and functions that can or

must be computed at compile-time.

 Use `const` for constants, and items that should be modified.

 Use volatile (and std::atomic<>) when working with items that are access in concurrent

environments, or by hardware.

58.10. MULTIDIMENSIONALS ARRAY

Do not use C’s multidimensional arrays.

RATIONALE. Dereferencing multidimensional is frequently (near universally) misunderstood.

For instance,

int array[9][20];

produces 9 arrays of 20 integer arrays. It is often misunderstood to produce 20 arrays, each

holding 9 integers.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 120

59. MEMORY

Valid References. At no instant may a pointer refer to an invalid (e.g. released) item.

No resource leaks:

 An allocated memory structure must have an instance, register, etc. pointing to it at all

times; at no instant may such a structure not be pointed to.

 There must exist a path of reference from global structures, stack structures, and

registers, to all allocated resources.

 In reference counted systems, code must balance a retain with a release; typically an

allocation is considered a retain. A release should occur at the same level as a retain.

59.1. PACKING STRUCTURES

Use the `PACK()` macro to pack structures.

Packing structures is a technique used to force data structures to have a predictable memory

placement, while still allowing lexical access to fields. It involves arranging the data

members of a structure in a way that reduces. the amount of padding added by the compiler

for alignment purposes. This is. particularly useful in embedded systems or when dealing with

low-level hardware interfaces where memory is limited.

Packing a structure in C and C++ is compiler specific. The `PACK()` macro is used to control

the packing alignment, and provide portability between compilers.

Here's an example of how to define a packed structure:

PACK(struct MyStruct
{
 int a;
 int b;
});

When not to use packing. Many platforms have strict rules about alignment of access. Using

packed structures – instead of procedure to encode/decode or serialize/deserialize them – is

only allowed in special cases: where the alignment is guaranteed.

59.2. DATA BUFFERS AND CROSS CHECKS

Buffer over and under runs are very common form of software bug. To help detect these

bugs, is to place a canary before and after each buffer or array:

Buffer

Canary

Canary

To catch overflow

To catch underflow

This is often done using a struct.

Figure 39: Overview of

buffers with canaries

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 121

59.3. USE STDATOMIC.H AND STD::ATOMIC<> FOR CONCURRENT ACCESS

Use std::atomic<> for any type or variable that may be accessed in one context, and modified in

another context. Contexts could be interrupt handlers, OS tasks, OS timer handlers, multi

CPU (or multi core) shared memory, etc.

Examples of where to use:

 Non-locals accessed in an ISR

 Variables/structures modified in one OS task (or thread), accessed in another

 Variables/structures accessed in a OS timer handler, and in a task (or thread)

Note: atomic<> is to be used in conjunction with mutexes in concurrent environments.

59.4. THE VOLATILE QUALIFIER

PRINCIPLE OF USE. If std::atomic<> is not available or applicable, use volatile with anything that

may be accessed in one context, and modified in another context. Contexts include interrupt

handlers, OS tasks, OS timer handlers, peripheral register access, multi CPU (or multi core)

shared memory, etc.

Examples of where to use:

 When accessing CPU registers or peripheral registers

 Non-locals accessed (read or modified) in an ISR or SysTick handler.

 Variables/structures modified in one OS task (or thread), accessed in another

 Variables/structures accessed in a OS timer handler, or task (thread)

MOTIVATION. The programmer's mental model is that modification is immediate. Without

volatile the compiler has the option to delay, or reorder committing changes to the memory (or

register); the compiler also has the option to reuse previously accessed values, rather than

fetching an updated value from the underlying storage.

Note: for accessing things larger than a single atomic unit (e.g. in the ARM Cortex non-32bits

aligned), further protection is needed.

EXAMPLES OF EFFECTS. The software without optimizations (or with a particular optimization

setting), but with optimizations, it doesn't anymore. The following pseudo code as an

example:

 set GPIO pin high

 wait 1uSec

 set GPIO pin low

This code might not create a blip. The compiler might toss out all of the GPIO pin

modifications, except the last one.

59.5. USE ATOMIC MODIFY, MUTEXES, ETC

A re-entrant approach must be used when modifying shared variables.

MOTIVATION. Read-modify-write race conditions are a very common bug. Some examples

Var++;
Var |= x;
Var &= ~1;

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 122

To perform any of those operations, the word is first loaded into a register, then the operation

is performed, and then word is written back to memory. During the steps, at any time another

thread or interrupt handler can access and modify the variable; but change will be lost when

the first thread overwrites it – with the value it has in its register, never having read the

modified one.

There are several acceptable ways to perform to modify a shared variable:

 Use atomic increment, decrement etc. These are the highest performance. On ARM

processors these can be created using LDREX and STREX. Otherwise,

 Use mutexes around modification to values,

 With interrupts/exception handlers, interrupts must be disabled.

60. PROCEDURE STRUCTURE

A procedure should look like:

/**Synopsis of the procedure

 @param param1 Description

 @return description

 description

*/

ErrType_t MyProcedure(param1)

{

 // Check parameters for bounds.

 if (...)

 {

 // On error:

 // Set error message

 // Perform error return

 return err;

 }

 // Do work, Check results

...

 // Return with any errors

}

Procedure Header

Declaration

Check parameters

Perform work

Return

The elements are

1. The descriptive documentation (see earlier section on documentation for complete

details)

2. Declaration, with parameter list. Procedures must be defined or declared prior to use;

all extern procedures are declared in header file; static procedures are declared (if

necessary) at the top of current file. The header file declaration was discussed in a

previous section.

3. The procedure itself checks its parameters

4. Performs work, and checks the error return of all calls

5. Returns with error code

60.1.1 Comments

Comments are required except where the code is trivial. It is better to explain every line than

to argue that the code is the documentation; source code is never self-documenting.

Figure 40: Typical

procedure template

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 123

Block comments should be at the same level of indentation as the surrounding code. Within

the comment, the text should align vertically.

Other comments (using the //) at the end of the line may be used, but this is not recommended.

When used, these should align vertically.

A comment should provide information needed for maintenance. The comments should

complement the code to provide an understanding by describing what the goal and/or action

is, how this code fits in the larger context; explain why (implementation) choices were made –

the rationale behind its approach – as well as how it works.

The comment text should avoid restating the obvious.

The comments should be written in complete sentences.

Writing good comments is a skill. See [Ousterhout 2022] for a discussion of techniques to

improving comments, ones that are meaningful, and not shallow restatements of the code.

60.2. PARAMETER LISTS

Procedures with no parameters shall be declared with parameter type void.

RATIONALE: A procedure declared without a parameter list does not mean no parameters are

to be passed. It means that nothing was said about what the parameters may be. This is

ambiguous.

60.3. DO NOT USE VARARGS

Procedures shall not use variable numbers of arguments, such as varargs.

RATIONALE: A variable number of arguments frequently introduces several kinds of bugs. A

procedure may erroneously access more parameters than were passed. It may erroneously use

a different type of access than was used to pass it. Types are coerced to ints and doubles; few

programmers are aware of this. There is no type checking on passing values.

60.4. DO NOT USE A STRUCT AS A PARAMETER VALUE TYPE

Do not use a struct as a value type for parameter. Use a const pointer or reference instead.

RATIONALE: This copies the entire struct onto the stack to pass it.

60.5. DO NOT USE A STRUCT AS A RETURN VALUE TYPE

Avoid using a struct as a return value type.

RATIONALE: This can increase stack usage on resource constrained targets. Many compiler

implementations copy the entire struct onto the stack to return it. While others the caller

allocates space on the stack and passes a pointer to it to the called procedure. The later is the

case for C++ (with return value optimization).

60.6. PARAMETER CHECKING

The input parameters should be checked for acceptable value ranges. This should be done

prior to performing any other work.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 124

60.7. RETURN VALUE CHECKING

Return values are to be checked. If they are to be ignored, comment must explain why, and

use a construction like:

 (void) funcCall(param1, etc); // Error doesn’t matter for reason XYZ

RATIONALE: Return codes often include error indications or resource handles. Not checking

the return values is a common source of software flaws, and incorrect error handling.

60.8. SIZE

Procedure should be small. Procedures should be small enough to fit comfortably on a screen.

RATIONALE: Big procedures are poor modularization, and undermine maintainability.

Longer procedures tend to have redundant code, something that rarely is a benefit.

60.9. INTERRUPT SERVICE ROUTINES

Interrupt handlers should have the _IRQ_ pseudo-qualifier. Many environments (e.g. Keil)

define this as nothing; the GNU C environment defines it as an interrupt attribute.

An example

 IRQ void fun_IRQHandler()

 {

 .. do stuff ...

 }

Use the following guidelines for interrupt service routines, and procedures that are effectively

interrupt service routines:

 Do very little in the interrupt service routine, only what is necessary. Push the rest of

the work to the main application.

 Do not use unbounded loops in an interrupt service routine

 atomic<> or the volatile qualifier must be used to access anything modified in the ISR

and another context (e.g. ISR, fault handler, main loop or a task).

 The interrupt service routine must not use mutexes or pend on IPC mechanisms.

 The interrupt service routine must not disable global interrupts.

 The interrupt service routine must not use floating point.

note: this applies to anything that the handler may call, directly or indirectly.

The ISR documentation should include:

 The function of the ISR. Common ones include:

o GPIO rising/falling edge input

o Compare / capture

o ADC interrupts

 The work of the interrupt service routine, including its flow.

Example 1: IRQ handler

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 125

 The bounds of the ISR execution time.

 The work of the access procedure – the task or main procedure that receives the

results of the interrupt. How does it check the values?

 When should the other contexts disable the routing?

60.10. EXCEPTION HANDLING ROUTINES

The exception handler – or microcontroller fault handler –

 atomic<> or the volatile qualifier must be used to access anything used in the exception

handler and another context (e.g. ISR, fault handler, main loop or a task).

 The handler must not use floating point.

note: this applies to anything that the handler may call, directly or indirectly.

Excepting PendSV, and SysTick the handler should:

 Trigger a software breakpoint, to allow debugging

 Put the outputs into a safe state

 Reset the system

60.11. MISC

Don't disable interrupts for very long.

61. EXPRESSION, OPERATORS & MATH

61.1. BOOLEAN

Do not cast essentially Boolean types and expressions to any other type or use them as another

(implicit casting).

61.2. THE PRECEDENCE OF C’S SHIFT OPERATORS

The C shift operators have a non-intuitive precedence. They should be used carefully:

1. Shift operations must be inside of a parenthesis – at least, if there are any operations

to the left or right of it.

2. The left hand and right hand operands must be in parenthesis, if they are an

expression. (That is to say, it must be "(4+2)" not "4+2".)

3. If a compiler has a flag to force precedence checking on >> as an error, it should be

used;

4. If a compiler has a flag to report possible errors on >>, it should be used.

COMMENT: Lint and many compilers, like Microsoft C’s compiler, do give a warning. The

bad news is that the error messages are pretty hard to understand:

 warning C4554: '>>' : check operator precedence for possible error; use parentheses to clarify
precedence

PRINCIPLE OF USE: The results of a computation should be as expected.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 126

EXAMPLES OF WHERE TO USE

Wrong:

 unsigned A = 4 + 2 >> 1;
 unsigned B = 2 + 1 << 1;

Correct:

 unsigned A = 4 + (2 >> 1);
 unsigned B = 2 + (1 << 1);

Correct:

 unsigned A = (4 + 2) >> 1;
 unsigned B = (2 + 1) << 1;

Note that this has a different result than the previous example of correct.

WHY & EXAMPLES OF EFFECTS. What are the computed values, for the C/C++ language, of A

and B below?

 unsigned A = 4 + 2 >> 1;
 unsigned B = 2 + 1 << 1;

The answers are 3 and 6, respectively. Many programmers would expect 5 and 4. In other

words, it is common to expect the shift operators to have more precedence than addition and

subtraction, but less than multiplication and division.

61.3. BE CAREFUL OF UNEXPECTED INTEGER OVERFLOW

In the integer family of types in C (and C-like) language values can silently overflow, leaving

you with a surprisingly small number (even a very negative one when you expect otherwise).

An example helps:

 int X = (A-B) + (D - C);

is not always the same as:

 int Y = (A + D) - (B + C);

The sum of A and D could be large enough to overflow the integer (or whatever) type. The

same for the sum of B and C. But – and the likely reason that they were written as two

subtractions before the addition – B might shrink A enough, and C might shrink D enough to

not overflow.

Verification and integration tests rarely catch arithmetic overflows. Hence it often triggers

only after the code deploys (`ships`).

 Look for this in code reviews,

 Verify that there is are unit tests designed to check this

 Consider using a wider type

61.4. FLOATING POINT VALUES

Floating-point is not to be used where discrete values are needed.

Floating-point is not to be used in interrupt handlers, exception/fault handlers, or in the kernel.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 127

RATIONALE: Many processors do not preserve the state of the floating-point unit on interrupt

or exception; or the processor may have been configured to not save the state. (Saving the

state can increase interrupt latency). Kernels– which are preferred to execute quickly – do not

preserve the state of the floating-point unit on entry to kernel space. (They do preserve it on

context switch.)

Regular review the compiler generated code to ensure that it has not employed floating points

for intermediate calculation.

See the appendix C {xlink} for the limits of float precision.

61.4.1 Comparison

Comparison of floating-point values should be treated with care, and reviewed for correctness.

 A float (or double) must not be used as a loop counter

 Exact comparisons (== and !=) shall not be used with float and double.

 Floating-point comparisons are not transitive: “a <= b” and “b < a” can both be false.

Math operations (especially division) of non-zero numbers can create “NANs.” The software

design should have a structured approach to checking for NANS, Infinites, and Out of range

values.

61.4.2 Countable and Floating point numbers are not associative nor
distributive

Arithmetic operators in C are not distributive. The countable numbers (int, short, unsigned and

signed, etc) preserve the least significant digits under arithmetic operation.

Floating point (floats and doubles) preserves the most significant digits, dropping the least.

That is its major appeal – it prevents the problems you see with the integer family above.

(Well, float point can overflow too). The following illustrates a bug from this:

 float X = (A+B) + (D + C);

is not always the same as:

 float Y = (A + D) + (B + C);

When A and B are small numbers, and C and D are big ones here is what happens. A plus D

is D, because the digits of A are insignificant and dropped. And, similarly, the digits of B are

insignificant and are dropped. But, A plus B does some up the digits, enough so that they do

add with D and C, giving a different result.

The answer, for simple cases, is to arrange the arithmetic operations from the smallest number

to the biggest.

Linear algebra is very heavily used in signal processing and some control systems. In those

systems, the matrix operations we learn as sophomores is very unstable. Matrices get

ridiculous numbers doing, say, an eigenvector – that is, the computed results do not work very

well, they can have not-a-number results ñ singularities and infinites and such. One way to

prevent this is to permute the matrix before performing the operation, like that sort from

smallest to largest, and the rearrange back to the proper order when done.

Numerical stability for these multiplies, divides, sums and differences, is a specialty. Check

that the use of good libraries for math, has comprehensive unit tests, and use specialist

reviews.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 128

61.4.3 Standard Math functions

Many standard library math functions are slow (to provide all of the semantics specified in

standards) and often are in terms of doubles.

Check to see if a fast, approximate version should be used.

62. CONTROL FLOW, AVOIDING COMPLEXITY

SUMMARY: Prefer techniques that simplify control flow structure. Complex control structures

tend to be hard to maintain, evaluate for correctness, and more likely to have bugs.

A program or task may be complex, but no subroutine (or method) may be complex.

Forward Progress. The software should always include a path that moves the execution

forward. Infinite loops are not allowed.

Progress to a known and controlled state. The software should always include a path that

moves the execution to a known and controlled state.

62.1. BLOCK BODY

The flow control primitives if, else, while, for and do should be followed by a block, even if it

is an empty block. For example:

Wrong:

 while(/* do something */)
 ;

Correct:

 while(/* do something */)
 {
 }

The block following a flow control primitive should always be bounded by brackets even if

the block contains only one statement. For example:

Wrong:

 if (isOpened())
 foobar();

Correct:

 if (isOpened())
 {
 foobar();
 }

62.2. COMMA OPERATORS

Do not use the comma operator. (Exceptions may be made for very restricted use cases, and

must be reviewed.)

62.3. CONDITIONS

Do not nest if-then statements more than 2-levels.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 129

Only use employ essentially boolean types and expressions conditions. Note: integer, pointer,

and other value types are not essentially boolean.

Do not nest “switch” blocks.

62.4. LOOPS

Things to avoid with loops (as they create complete control flow)

 Do not nest “for” loops more than 2-levels.

 Too many ‘continue’ or ‘break’ statements in for loop

62.4.1 Loop conditions

Where possible, the loop conditions other than index variable should be const variables.

Wrong:

for (Idx = 0; Idx < length-2; Idx++)
{
…
}

Correct:

int const End = length-2;
for (Idx = 0; Idx < End; Idx++)
{
…
}

RATIONALE. This creates smaller, faster code, which uses fewer memory accesses and

reduces power consumption (in lower power designs).

The compiler may reload (and recalculate) the variables used in the comparison, even though

they have not changed. The compiler has to be conservative and assume that the block

(somehow) may affect the value, and so it must reload the variables with each comparison.

This is more likely with more complex blocks that are harder for the compiler to analyze. The

exception is if it can prove (via aggressive analysis) that the block will not modify it.

62.5. EARLY RETURNS

A procedure should return errors early.

RATIONALE. It is better to have a clear procedure that returns early, rather than to muddle the

procedure with nesting, convoluted control flow and temporary variables.

62.6. NO RECURSION / CALL LOOPS

Recursion – direct or indirect – is not allowed.

62.7. GOTOS

The goto statement is not recommended. However there may be instances where the use of a

goto statement may actually make the source code more understandable and robust. The

software engineer must document the use of the goto in the source code and be prepared to

defend this choice in software source code reviews.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 130

62.8. STATIC ASSERT

Use static assert to check the sizes of types, structures.

62.9. ASSERTS

ASSERT() (and similar) shall only be used to in conjunction with unit and integration testing, to

raise an error that fundamental calling assumptions have been violated.

Do not use side effects in the arguments to these.

The code is expected to employ checks of parameters, internal state and results. If there is an

error, clean up, log a trace point or raise a software breakpoint, and return an appropriate

error.

RATIONALE. The default behaviour of an assert is to crash the system, rather than handling the

error. In a production build, that should be done only for catastrophic errors. The asserts for

test case support should disabled (“compiled out”).

COMMENT. Many 3rd party modules employ ASSERT() like functionality. These modules

should be assessed whether ASSERT() is employed and provide a plan to handle when an assert

is raised.

63. PROHIBITED PROCEDURES

There are several procedures, that are more trouble than they are worth. These may be hard

(or impractical) to make function correctly, better alternatives exist, and so on. To help flag

them, may use git’s #define system:

https://github.com/git/git/blob/master/banned.h

63.1. PROCEDURES NOT TO USE

String procedures. Do not use scanf(),sprintf(), strcat(), strncat(), strcpy(), strncpy(), fprintf(),printf(),

sprintf(), snprintf()

If a formatted string procedure is needed, no not use snprintf() (and similar). This procedure

does not return the count of bytes used in the buffer – it returns the count it would have used

under ideal circumstances.

File system procedures: fgets(), getcwd(), gets()

63.2. ALTERNATIVE PROCEDURES

To reduce chances of buffer overflows and other characteristic bugs, Annex K of the C

standard (from TR24731) provides an alternate API. They are supported in several tool

chains, but many do not support it.

The procedures tend to have an ‘_s’ suffix and require the sizes of both buffers involved. For

instance:

 Copying block of memory, use memmove_s()

 To check the length of string use strnlen_s()

When these procedures present (and the functionality is needed) use these procedures. For

portability include shims that bridge to the more widely available ones as needed.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 131

If the length of the string is known, do not use strlcat(), strlcpy() or similar procedures. Use

the memory copy procedures instead.

64. MICROCONTROLLER SPECIFIC GUIDELINES

Be aware of whether the processor can support floats. On processors that support only floats,

check for double promotion. Expressions, and vaargs can promote float operations to double;

some procedures (such as atof()) only return double. This pulls in emulation, which is slow

and can consume code space. Check the linker report and map file to confirm that emulation

code has not been pulled in.

Do not use floats on ARM Cortex-M0 and Cortex-M3. These processors do not support

floating point (floats and doubles). When used, they are emulated in software, which is slow.

64.1. USE OF RATIONAL NUMBER FORMS

Many microcontrollers lack hardware floating point. Use rational numbers on those.

64.2. USE OF MULTIPLICATION AND DIVISION

Many microcontrollers (PIC, Cortex-M0) do not include a division or (in some cases) a

multiplication. The compilers are quite good, especially if only one of the terms in the

multiplication is a variable. Under some circumstances, the compiler is also able to analyze

the code and translate a formula of two or more variables into a small set of formulas of a

single independent variable. It is best to for the programmer to do this manually.

When the above technique cannot be applied, and the variables can be large in value, it may

be better to convert the value to a logarithmic form, do the operation as arithmetic, and

exponentiate the value back.

64.3. HOW AND WHEN TO USE ASSEMBLY

Using assembly is inherently processor specific, so it should only be created in important

blocks. The assembly must be rigorously tested against a set of known values at critical

points. The blocks that use these optimizations must be similarly tested.

65. REFERENCES AND RESOURCES

Barr, Michael, How to use the volatile keyword

http://www.barrgroup.com/Embedded-Systems/How-To/C-Volatile-Keyword

Barr, Michael, Coding standard rule for use of volatile

http://embeddedgurus.com/barr-code/2009/03/coding-standard-rule-4-use-volatile-

whenever-possible/

Boswell, Dustin; Trevor Foucher, “The Art of Readable Code,” O’Reilly Media, Inc. 2012

Ellemtel Telecommunication Systems Laboratories, “Programming in C++ Rules and

Recommendations”, Document: M 90 0118 Uen, Rev. C, 1992-April 27

http://www.doc.ic.ac.uk/lab/cplus/c++.rules/

Exida Consulting, “C/C++ Coding Standard Recommendations for IEC 61508” V1 R2 2011

Feb 23, http://exida.com/images/uploads/exida_C_C++_Coding_Standard_-_IEC61508.pdf

Labrosse, Jean MicroC/OS-II: The Real-Time Kernel, 2nd Ed, CMP Books, 2002

This includes a chapter on the coding style guide employed in the RTOS.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 132

Lockheed Martin Corporation, “Joint Strike Fighter, Air Vehicle, C++ Coding Standards”,

Document: 2RDU000001 Rev. C, 2005 December

Microsoft, Secure Coding Guidelines

https://docs.microsoft.com/en-us/dotnet/standard/security/secure-coding-guidelines

MISRA Consortium Limited, “MISRA C++:2023, Guidelines for the use of the C++:17 in

critical systems” 2023

MISRA Consortium Limited, “MISRA C:2023, Guidelines for the use of the C language in

critical systems” 2023, 3rd ed

An excellent, well-written coding standard. Strongly recommended.

NASA; Steven Hughes, Linda Jun, Wendy Shoan, “C++ Coding Standards and Style

Guide”, 2005

https://ntrs.nasa.gov/search.jsp?R=20080039927

Oshana, Robert and Mark Kraeling Newnes, “Software Engineering for Embedded Systems:

Methods, Practical Techniques, and Applications,” 2013

Appendix 1 contains a useful coding style guide

Ousterhout, John A Philosophy of Software Design, 2nd ed, 2022

This has an excellent discussion on techniques to improve commenting, naming, and

structuring the design.

Sanfilippo, Salvatore, Writing system software: code comments. https://antirez.com/news/124

An interesting classification of different kinds of comments and their roles.

Seebach, Peter “Everything you ever wanted to know about C types” 2006Seebach, Peter

“Everything you ever wanted to know about C types” 2006

Part 1: http://www.ibm.com/developerworks/library/pa-ctypes1/

Part 2: http://www.ibm.com/developerworks/power/library/pa-ctypes2/index.html

Part 3: http://www.ibm.com/developerworks/power/library/pa-ctypes3/index.html

Part 4: http://www.ibm.com/developerworks/power/library/pa-ctypes4/index.html

SEI CERT, C Coding Standard

https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

Turner, Jason; C++ best practices

 https://github.com/lefticus/cppbestpractices/blob/master/00-Table_of_Contents.md

“The compiler doesn’t know whether you know what’s good for you.”

– Raymond Chen

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 133

CHAPTER 17

Code Inspections and

Reviews

Source code should be checked for good workmanship, thru inspections & reviews:

 When a review should occur

 Who should review

 How to inspect and review

 What to report, outcomes

Note: There is no universally accepted and adopted approach to peer review. Each

enviornment has its own norms for peer review. These are checklists and templates that I

have constructed over years, having found little available elsewhere.

The best reviews are modified Fagen-style reviews. Peer Reviews in Software [Wiegers

2001] is the best resource that I have found.

66. WHEN TO REVIEW

A review might occur when

 There are proposed changes to a stable codebase,

 When closing out a bug

 When a project reaches a control gate

67. WHO SHOULD REVIEW

What kind of person should participate in a review?

 The reviewers should have experience with the class of hardware being used. In typical

embedded development today, they should be experienced with 32-bit embedded

software, Cortex-M and similar microcontrollers.

 In some cases, the reviews will require someone with experience in the microcontroller.

 Reviewers should have a lot experience with the way software, microcontrollers, and

hardware can go wrong.

 Some reviewers should be independent; they should not be working on this artifact.

 The owner of the subsystem or other area of code

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 134

Others may participate in a review, of course. This includes:

 The author need not attend, as the code should stand on its own

 People being brought into the team

 People with little experience in this area of engineering.

The later are not expected to contribute specific technical comments, but they may learn the

system, the performance of reviews, and provide feedback on the understandability &

maintainability of this foreign code.

68. HOW TO INSPECT AND REVIEW CODE

How can reviews be performed? One may apply any of the well-documented review and

inspection techniques that can be found in the references. Common review methods are:

 The reviewers can meet and perform a formal inspection: e.g. with presentation, roles,

and sign-offs.

 Some small reviews can be reviewed at each person’s desk. Code annotation tools such

as CodeCollaborator10, and Github review tools are often used.

This applies to general reviews, as well as specialized inspections.

 General reviews emphasize the workmanship of the code – maintainability (is it clear

enough for others to work on in the future), basic quality-of-construction, etc.

 Specialized inspections are used to focus attention on specific areas that may be esoteric

or require specialized technical skill to judge.

The reviews should be provided (in addition to the code):

 Style and other workmanship guides,

 Evaluation guides and rubrics

 The top level and detailed designs

 Supporting data sheets, application notes, vendor documentation

Note: in some institutions, the unit and integration tests and reports are also provided. It isn’t

practical review these; only to check them at high level, and a few key test cases.

The reviewers should be provided a summary of areas to look at. The reviewers examine

these areas (and inputs), looking defects, or constructions that can be difficult to maintain.

68.1. SPECIALIZED INSPECTIONS

Specialized inspections are used to focus attention and effort. These delve into key areas and

slices of code to answer narrow questions. Typical questions may be:

 Is the processor set up properly – are the clocks / oscillators turned on properly, etc?

 Are the watchdog timers (or similar protective timers) set up properly and detect enough

unresponsiveness in the code?

 Is the source code specific to the microcontroller / hardware implemented correctly?

10 https://smartbear.com/product/collaborator/overview/

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 135

 Do the critical and supervisory sections of software perform only their intended functions

(and not other functions) and do not result in a risk?

 Is there consistency in the data and control flows across interfaces?

 Is it correct and complete with respect to the safety requirements?

See also

 Appendix I for the Code Complete Code Review check lists,

 Appendix J for a rubric to apply in the reviews

 Appendix E for Bug classification

69. THE OUTCOMES OF A CODE REVIEW

Reviewers comment on the aspect of the code quality:

 Detailed design

 Functionality

 Complexity

 Testing

 Naming

 Comment Quality

 Coding style

 Maintainability

 Understanding/comprehension.

The results of a review ideally should:

 Be actionable and easy to fix

 Produce few false positives

 Focus on where there can be improvements with significant impact on code quality.

The results of a review might be realized one or more of the following ways:

 Gathering the results in a document (or spreadsheet) in a tabular fashion

 Annotate the source code, e.g. using a tool such as Code Collaborator

 Fill out bug reports

 Provide written feedback

69.1. A TIP ON FEEDBACK

When you are providing feedback, consider:

 Should it be said? Is the comment necessary, kind, true and helpful?

 Does it have the right emphasis? The emphasis, especially critiques, should be

proportionate. Scale using a rubric; some are included in Appendix H and Appendix J.

 How should the comment be said? Specific, actionable, measureable or distinct (that it

has an effect when performed; can tell that it was done), timely (can be done

immediately, or has time bounds)

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 136

 What is the person try to accomplish? {with the thing they are getting feedback on?}

69.2. REWORK CODE AFTER A REVIEW

The rework, in most cases, can be done by a second person or the primary developer.

70. REFERENCES AND RESOURCES

Cohen, Jason, Best Kept Secrets of Peer Code Review: Modern Approach. Practical Advice,

2006

Includes discussion of “online” reviewing of software changes and new code, appropriate

for merge requests.

IEEE Std 1028-2008 - IEEE Standard for Software Reviews and Audits

The standard provides minimum acceptable requirements for systematic reviews

Wiegers, Karl Peer Reviews in Software: A Practical Guide 2001, Addison-Wesley

Professional

This is the best book on software reviews.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 137

CHAPTER 18

Code Inspection &

Reviews Checklists

This chapter summarizes the code review checklists

 The types of reviews to perform checklist

 Basic review checklist

 Specialized Review checklists

71. REVIEWS

These are the kinds of reviews to perform

 Basic reviews

 Microcontroller / Hardware Initialization review

 Error returns review

 Fault handling review

 Memory/Storage handling review

 Prioritization review

 Concurrency review

 Critical function / Supervisor review

 Low power mode review

 Numerical processing review

 Signal processing review

 Timing review

72. BASIC REVIEW CHECKLIST

Before a review proceeds:

 Code has clean-result when checked with analysis tools – MISRA C rules, clang-format,

clang-tidy, compiling with extensive warning checks enabled, etc.

 There is design documentation, and it has been reviewed.

 There are unit and integration tests.

See also

 Appendix I {xlink} for the Code Complete Code Review check lists

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 138

 Appendix J {xlink} for a rubric to apply in the reviews

72.1. BASIC STYLE

Layout checks:

 Commenting: there are comments at the top of the file, the start of each function, and

with all the code that needs an explanation.

 Does the source code conform to the coding style guidelines & other conventions? These

cover location of braces, variable and function names, line length, indentations,

formatting, and comments.

 Code naming, indentation, and other style elements are applied consistently (esp in areas

beyond the style guidelines)

Names:

 Are the file names well chosen?

 Are the files in the correct location in the file tree? In the repository?

 Are the names – for variables, files, procedures, and other objects – clear and well

chosen? Do the names convey their intent? Are they relevant to their functionality?

 Is a good group / naming convention used? Related items should be grouped by name

 Is the name format consistent?

 The names only employ alphanumeric and underscore characters?

 Do the names provide the relevant units (and scale)?

 Are there typos in the names?

 Numbers are not given stupid names like ZERO or ONE, etc?

Values and operators:

 Parentheses used to avoid operator precedence confusion?

 Are const and inline used instead of #define?

 Is conditional compilation avoided? Can it be reduced?

 Avoid use of magic numbers (constant values embedded in code) – and basic numbers

are not given trite names such as ZERO, or ONE?

 Use strong typing (including sized types, structs for coupled data, const)?

 Use the proper types for quantities and pointers?

Control flow checks:

 Are all inputs checked for the correct type, length, format, range?

 Are invalid parameter values handled?

 Are variables initialized at definition?

 Are output values checked and defined?

 Are NULL pointers, empty strings, other boundary conditions (for results) handled?

72.2. BASIC FUNCTIONALITY

 Does the code match the detailed design (correct functionality)?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 139

 All documented functionality is implemented? All implemented functionality is

documented?

 Does the code work? Does it perform its intended function? Is the logic correct? etc.

 Is the update/check of state correct? Any incorrect updates or checks?

 Is the wrong algorithm/assumption/implementation used?

 Is the work performed in the correct order?

 Check that proper types are employed

72.3. SCOPING

 Proper modularity, module size, use of .h files and #includes

 Is the code as modular as possible?

 Minimum scope for all functions and variables; e.g. few globals?

 Can any global variables be replaced?

 Are there unused or redundant variables? Macros?

 Do the variables have an appropriate storage class (and scope) – static, extern, stack?

 The register storage class is not used?

72.4. CONTROL FLOW

 There is forward progression: loops are bounded, delays are bounded, etc.

 Do loops have a set length and correct termination conditions?

 Loop entry and exit conditions correct; minimum continue/break complexity

 Conditionals should be minimally nested (generally only one or two deep)

 Conditional expressions evaluate to a boolean value

 Conditional expressions do not assignments, or side-effects

 All switch statements have a default clause, with error return

 Do the work events/messages get submitted backwards in the IO queue network? Is

there a potential infinite work loop?

72.5. DOCUMENTATION

 Are all procedures/functions/variables/etc commented?

 Do they properly describe the intent of the code?

 Is any unusual behavior or edge-case handling described?

 Are all parameters of the procedure are documented?

 Are the ranges and constraints of the parameters documented?

 Are the return value(s) documented?

 Are all of the error conditions/returns documented?

 Is the use and function of third-party libraries documented?

 Are data structures and units of measurement explained?

 Is there any incomplete code? If so, should it be removed or flagged with a suitable

marker like ‘TODO’?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 140

72.6. MAINTAINABILITY AND UNDERSTANDABILITY

 Is all the code easily understood? Is the code simple, obvious, and easy to review?

 Is the code unnecessarily, ornate or complex? Are there more intermediate variables

than necessary? Is the control flow overly complex? (Look for variables that hold the

return value far from the return)

 Code complexity measure is low (below set threshold)?

 Is there any redundant or duplicate code?

 Is there any dead or commented out code?

 Can any of the code be replaced with library or built-in functions?

 Any changes that would improve readability, simplify structure, and utilize cleaner

models?

 Does the code have too many dependencies?

72.7. TESTABILITY

 Is the code testable?

 Is the implementation suitable to be unit tested?

 Are the procedures small enough?

 Is the control flow too complex?

 Does it take too many external inputs – parameters, globals (including private variable),

other calls, complex state, etc.?

 Are there unit tests? Do they cover key cases for the functions?

 Are there integration tests?

72.8. PERFORMANCE

 Are there obvious optimizations that will improve performance?

 Can any of the code be replaced with library functions built for performance?

Performance changes to improve the implementations:

 Can the data access be improved? E.g. caching and work avoidance.

 Can the I/O scheduling be improved? E.g. batching of writes, opportunistic read ahead

and avoiding unnecessary synchronous I/O.

 Are there better / faster data structures for in-memory and secondary storage?

 Are there other performance improve techniques that can be applied?

Synchronization-based performance improvements:

 Are the synchronization methods inefficient?

 Can a pair of unnecessary locks be removed?

 Can compare-and-swap or other “lock free” atomic procedures be employed?

 Can finer-grained locking be employed?

 Can write locks be replaced with read/write locks?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 141

72.9. OTHER

 Can any logging or debugging code be removed?

 Check that prohibited procedures and other constructs are not used.

 Are there regular checks of operating conditions?

 Data structure ordering is efficient for access pattern? Alignment and padding will not

be an issue?

 Do the variables have the appropriate qualifiers? volatile? const?

73. SPECIALIZED REVIEW CHECKLISTS

This section provides checklists for specialized, focused reviews:

 Microcontroller / Hardware Initialization review

 Error returns review

 Fault handling review

 Memory/Storage handling review

 Prioritization review

 Concurrency review

 Critical function / Supervisor review

 Low power mode review

 Numerical processing review

 Signal processing review

 Timing review

Note: these can be used in conjunction with the detailed design review checklists. If the

detailed design review covered these, the review is much faster; often there is no detailed

design review.

See also

 Chapter 13 {xlink} Design review check lists

 Appendix I {xlink} for the Code Complete Code Review check lists

 Appendix J {xlink} for a rubric to apply in the reviews

73.1. MICROCONTROLLER / HARDWARE INITIALIZATION REVIEW CHECKLIST

Looks for bugs in the initialization and configuration of the hardware:

 Check the initialization order

 Are the clocks set correctly? i.e., no over-clocking at the voltage and/or temperature

 Does the code handle oscillator (or clock) startup failures?

 Does the code check the initial clock rate? Properly?

 Check that the source clock, prescalar, divisor, and PLL configuration are setup

correctly.

 Check the peripherals are configured and enabled properly

 Is the software using the right bus for the peripheral?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 142

 Check that the proper clock source is enabled for the peripheral.

 Check that the peripheral is not over-clocked for the power source and temperature

range. (Some peripherals have tighter constraints)

 Check that the correct power source / enable is used in setting up the peripheral

 DMA channel assignments match hardware function constraints

 GPIO mode, direction (in/out), biasing (pull-ups, pull-downs) are configured correctly.

 Power supervisor / brown-out detect is configured properly.

 Lock bits are set on peripherals – GPIO, timer, etc.

 The microcontroller’s errata has read and applied?

73.2. ERROR RESULTS REVIEW CHECKLIST

A lack of checking results, or incorrectly handling the results, is a frequent source of critical

failures. Look for bugs in the handling (or lack thereof) of return values and error results:

 Check that NULL pointers, empty strings, other result boundary conditions are handled

 Are the return values/cases defined? Are the error returns documented?

 Error handling for function return is appropriate

 Does it check the correct (or wrong) set of error codes?

 Is there missing or incorrect error code handling?

 Where third-party utilities are used, are returning errors being caught?

73.3. FAULT HANDLING (WITHIN PROCEDURES) REVIEW CHECKLIST

Defects in fault handling are a common source of critical failures. Review the failure paths.

 Check that the semantics for the failure are handled correctly. Is metadata updated

properly? Are the resources freed?

 Check that allocated resources are release

 Check that the locks/semaphores/mutexes are released correctly

 Look for null pointer dereferences, and code that incorrectly assume the pointers are still

valid after failure

 Check that it returns correct error code – i.e. not the wrong error code

73.4. MEMORY HANDLING REVIEW CHECKLIST

Has the memory been partitioned in a manner suitable for Class B? i.e., does the software

isolate and check the regions?

 Are there potential buffer overflows?

 Are there good practices to prevent buffer overflows – bound checking, avoid unsafe

string operations?

 Dereferences of free’d memory

 Dereferences of NULL pointer

 Dereferences of undefined pointer value

 Incorrect handling of memory objects

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 143

 Didn’t release memory / resource

 Free’d memory resource twice

 Parity checking is enabled

 Redundant memory is segregated and stored in a different format

 Check that the data access will be performant; that a slow approach is not employed

unnecessarily

 Memory pages write protected

 Memory protection unit is enabled? Access control is configured properly?

 Are pointers cast to non-pointer types? Are non-pointer types cast to pointers? Are they

the same size?

Non-volatile storage:

 Doesn't overwrite or erase the non-volatile data in use

 Doesn't use a “replacement” strategy of writing the most recent/highest good-copy of the

data.

 Accounts for loss of power, reset, timeout, etc during read/write operation

 Checks supply voltage before erasing/writing non-volatile memory

 Performs read back after write

 Checks that software detects bit-flip and other loss of data integrity (e.g. employs CRC)

 Check that data recovery methods will work, if employed

 Check that the correct version of stored data will be employed (such as on restart)

 Interrupts and exceptions are disabled during program memory is modified.

 Cache/instruction pipeline is flushed (as appropriate) after program memory

modification.

 Check that the data access will be performant; that an slow approach is not employed

unnecessarily

 Check that the data access will not interfere with the other timing.

73.5. PRIORITIZATION REVIEW CHECKLIST

 Rate Monotonic Analysis (RMA) and dead-line analysis has been performed?

 Task/thread prioritization is based on the analysis?

 Mutex prioritization is based on the analysis?

 Events, Messages and IO queue prioritization are based on the analysis?

 Interrupt prioritization is based on the analysis

 DMA channel prioritization is based on the analysis

 CAN message priorities are based on the analysis

 ADC priorities are based on the analysis

 Bluetooth LE notification/indication priorities are based on the analysis

73.6. CONCURRENCY REVIEW CHECKLIST

 Are there any missing mutex, locks, or IPC mechanisms?

 Check acquisition order of locks/semaphores/mutexes – is the order wrong or potential

for dead locks?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 144

 Check for violations of access atomicity: not using atomic<>, missing volatile keyword,

assuming read/write is atomic when it is not, missing write barriers, etc.

 Check for read-modify-write race conditions.

 Check order of multiple accesses

 Check for missing release of lock/semaphore/mutex

 Mutexes are unlocked in the same procedure that they are acquired (locked).

 Check for unlocking locks, posting semaphores or mutexes multiple times – not just at

runtime, but that there is only one place that they are unlocked or posted.

 Mutexes are unconditionally unlocked – they are not in “if” or other condition.

 Look for forgotten release of locks/semaphores/mutexes

 Are there ways to reduce the blocking time?

 Are there ways to reduce disabling interrupts?

 Are non-thread-safe (non-reentrant) procedures or structures used?

73.7. CRITICAL FUNCTION / SUPERVISOR REVIEW CHECKLIST

Check that critical functions (e.g. Class B and C of 60730) are suitably crafted:

 Is the code for the critical functions limited to a small number of software modules?

 Is the code for the critical functions small?

 Is the code complexity low? Are there no branches – or only simple branches?

 Are the possible paths thru the critical function code small, and simple?

 Is the relation between the input and output parameters simple? Or at least, simple as

possible?

 Are complex calculations used? They should not be. Especially as the basis of control

flow, such as branches and loops.

 Power supervisor / brown-out detect is configured properly.

 Checks the clock functionality and rates

 Watchdog timer is employed (and correctly)

 Is the watchdog reset only after all protected software elements are shown to be live?

Example bad design: resetting the watchdog in the idle loop, or every time thru a run

loop.

 Check that the watchdog timer is not disabled anywhere in the code

 Is the external watchdog handshake done only after all the software items under

protection have been checked for liveliness? A bad approach is to use a PWM for the

handshake, as a PWM can continue while software has locked up or is held in reset.

 Handles interrupt overload conditions

 Critical program memory is protected from writes. How: Hardware level? Software?

 Program memory CRC check.

 Stack overflowing checking

 Critical data is separated, checked, protected.

 Cross checks values

 Performs read backs of sent values

 Independent checks / reciprocal comparisons to verify that data was exchanged

correctly.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 145

 Periodic self-tests or functional tests

 Are there possible partition violations from data handling errors, control errors, timing

errors, or other misuse of resources?

 That the software can meet the scheduling requirements, and the timing constraints

specified.

 Do the fail-safe and fail-operational procedures bring the product to the defined

acceptable state?

73.8. LOW POWER MODE REVIEW CHECKLIST

Power configuration for low power modes:

 Does it switch to low clock source(s) and disable the others?

 Are the IOs set to a low direction, mode (e.g. analog in?) and bias (e.g. pull-down, pull-

up)?

 Are peripherals disabled where they can be?

 Are peripheral clocks disabled where they can be?

 Are the proper flushes, barriers, etc. executed before going into a sleep state?

 Is the proper low-power instruction used?

 Is there a race condition in going into low-power state and not being able to sleep or

wake?

 Check coming out of low power mode restores the operating state

73.9. NUMERICAL PROCESSING REVIEW CHECKLIST

Check for correct arithmetic, and other numerical operations:

 Check that division by zero, other boundary conditions are handled

 Is the FPU configured properly? For example, is lazy context save of floating-point

state (LPSEN) disabled on ARM Cortex-M4s?

 Floating point is not used in interrupts, exception handlers, or the kernel

 Check that floating point equality is used properly – i.e., something other than ==. Does

it handle denormals, non-zeros, NaNs, INFS and so on?

 Are the equations ill-conditioned?

 Is the method of calculation slow?

 Check that denormals, NaNs, INFs, truncation, round off that may result from

calculations are properly handled.

 Are the use of rounding and truncation proper?

 Would use of fixed point be more appropriate?

 Is simple summation or Euler integration employed? This is most certainly lower

quality than employing Simpsons rule, or Runge-Kutta.

73.10. SIGNAL PROCESSING REVIEW CHECKLIST

 Are the ADCs over-clocked for the signal chain? Check that the sample time and input

impedance are aligned.

 Is the sample time sufficient to measure the signal?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 146

 Is there a potential time variation (e.g. jitter) in the sampling? The code should be

implemented for low jitter. For instance, a design that uses a DMA ring-buffer has low

variation, while run-loop or interrupt trigger can have a great deal of time variation.

 Is oversampling applied? Is the oversampling done in a proper way?

 Is simple summation or Euler integration employed? This is most certainly lower

quality than employing Simpsons rule, or Runge-Kutta.

 Is the proper form of the filter used? Is an unstable form used?

 Does it have ringing, feedback, self-induced oscillation or other noise?

 Does handle potential saturation, overflows?

 Efficient, fast implementation?

 Is there good instruction locality on the kernel(s)?

 Is there good data locality on the kernel(s)?

 Is the signal processing unnecessarily complex?

 Check the step response of the signal processing

73.11. TIMING REVIEW CHECKLIST

 Does the timing meet the documented design and requirements?

 Are there possible timing violations?

 Are there race conditions?

 Is enough time given to let a signal/action/etc propagate before the next step is taken?

 Is there a potential for hidden delays (e.g. interrupt, task switch) that would violate the

timing?

 From the time the trigger is made to the action, what worst case round-trip? Include

interrupts, task switching, interrupts being disabled, etc. Is this timing acceptable?

 The length of operations, in the worst case, does not cause servicing the watchdog timer

to be missed?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 147

Appendices

 ABBREVIATIONS, ACRONYMS, & GLOSSARY. This appendix provides a gloss of terms,

abbreviations, and acronyms.

 PRODUCT STANDARDS. This appendix provides supplemental information on standards

and how product standards are organized

 FLOATING POINT PRECISION. This appendix recaps the limits of floating-point precision.

 BUG REPORTING TEMPLATE. A template (and guidelines) for reporting bugs

 TYPES OF DEFECTS. This appendix provides a classification of different kinds of software

defects that are typically encountered.

 CODE COMPLETE REQUIREMENTS REVIEW CHECKLISTS. This appendix reproduces

checklists from Code Complete, 2nd Ed that are relevant to requirements reviews.

 CODE COMPLETE DESIGN REVIEW CHECKLISTS. This appendix reproduces checklists from

Code Complete, 2nd Ed that are relevant to design reviews.

 DESIGN REVIEW RUBRIC. This appendix provides rubrics relevant in assessing the design

and its documentation.

 CODE COMPLETE CODE REVIEW CHECKLISTS. This appendix reproduces checklists from

Code Complete, 2nd Ed that are relevant to code reviews.

 SOFTWARE REVIEW RUBRIC. This appendix provides rubrics relevant in assessing

software workmanship.

 ARM CORTEX-M SPECIFICS. Technical tips and design information too low-level for a

detailed design document.

 HARDWARE-FIRMWARE INTEGRATION TESTS.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 148

[This page is intentionally left blank for purposes of double-sided printing]

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 149

APPENDIX A

Abbreviations,

Acronyms, Glossary

Abbreviation
/ Acronym

Phrase

ADC analog to digital converter

ANSI American National Standards Institute

ARM Advanced RISC Machines

BNF Backus-Naur Form

BSP board support package

API application programming interface.

CAN controller-area network

CRC cyclic redundancy check

DAC digital to analog converter

DMA direct memory access

EN European Norms

GPIO general purpose IO

Hz Hertz; 1 cycle/second

I
2
C inter-IC communication; a type of serial interface

IEC International Electrotechnical Commission

IPC interprocess communication

IRQ Interrupt request

ISO International Organization for Standardization

ISR Interrupt service routine

JTAG Joint Test Action Group

MCU microcontroller (unit)

MPU memory protection unit

NMI non-maskable interrupt

NVIC nested vector interrupt controller

NVRAM non-volatile RAM

PWM pulse width modulator

Table 39: Common

acronyms and

abbreviations

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 150

QMS quality management system

RAM random access memory; aka data memory

RISC reduced instruction set computer

RTOS real time operating system

SDK software development kit

SDLC software development lifecycle

SPI serial peripheral interface

SRAM static RAM

SWD single wire debug

TBD to be determined

TMR timer

UART universal asynchronous receiver/transmitter

WDT watchdog timer

Phrase Description

abnormal operating
condition

A condition when an operating variable has a value outside of its normal operating

limits.11 See also fault, normal operating condition.

allowed operating
condition

A condition when each of the operating variables (flow, pressure, temperature,

voltage, etc.) has a value within of its respective normal operating limits, and so

the “system will satisfy a set of operational requirements” [IEC 62845 3.10]. See

also abnormal operating condition, fault.

analog to digital converter An analog to digital converter measures a voltage signal, producing a digital value.

application logic Application logic is a set of rules (implemented in software, or hardware) that are

specific to the product.

Backus-Naur form A notation used to describe the admissible calling sequences for an interface.

Traditionally this form is used to define the syntax of a language.

bitband An ARM Cortex-M mechanism that allows a pointer to a bit.

black-box testing Testing technique focusing on testing functional requirements (and other

specifications) with no examination of the internal structure or workings of the

item.

board support package The specification to an RTOS and/or Compiler of what peripherals the MCU has

internally and is directly connected to.

certification A “procedure by which a third party gives written assurance that a product,

process or service conforms to specified requirements, also known as conformity

assessment” [IEC 61400-22 3.4] longer description at [IEC 61836 3.7.6]

coding style guide “specif[ies] good programming practice, proscribe unsafe language features (for

example, undefined language features, unstructured designs, etc.), promote code

understandability, facilitate verification and testing, and specify procedures for

source code documentation.” [IEC 61508-3 7.4.4.13]

aka coding standard

coefficient A measure of a property for a process or body. This number is constant under

specified, fixed conditions.

11 Modified from http://www.wartsila.com/encyclopedia/term/abnormal-condition

Table 40: Glossary of

common terms and

phrases

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 151

comment Text, usually to provide context, clarify or explain the requirement(s).

control function “functions intended to regulate the behaviour of equipment or systems” [IEC

61892-2 3.9], it typically “evaluates input information or signals and produces

output information or activities” [IEC 62061 H.3.2.14]

see also safety-related control function

control function (class B) Those “control functions intended to prevent an unsafe state of the appliance...

Failure of the control function will not lead directly to a hazardous situation” [IEC

60730-1:2013 H.2.22.2]

customer requirement A requirement in any of the top-level documents, but especially in the customer

(or user) requirements specification.

cyclic redundancy check A form of error-detecting code. A check value is computed from a block of data.

data integrity That the stored data – such as program memory – is intact, unchanged, in the

expected order and complete; that is, that the entire program memory area matches

exactly with the data defined for a particular revision.

data retention The ability for a storage to hold bits

debounce Switches and contacts tend to generate multiple rising & falling edges when

coming into contact; debouncing removes the extra signals.

diagnostic A “process by which hardware malfunctions may be detected” [IEEE 2000]

defect An “imperfection in the state of an item (or inherent weakness) which can result in

one or more failures of the item itself, or of another item under the specific service

or environmental or maintenance conditions, for a stated period of time” [IEC

62271-1 3.1.16]

design document A design document explains the design of a product, with a justification how it

addresses safety and other concerns.

digital to analog converter A digital to analog converter is used create a voltage signal from an internal value.

direct memory access A special purpose microcontroller peripheral that moves data between the

microcontroller’s storage and another peripheral or storage; this is useful to reduce

work done in software.

error An error is the occurrence of an incorrect (or undesired) result.

exception An “event that causes suspension of normal execution” [IEC 61499-1 3.36]

 A special condition – often an error – that changes the normal control flow. On an

ARM Cortex, this can cause the processor to suspend the currently executing

instruction stream and execute a specific exception handler or interrupt service

routine.

failure1 A failure “is a permanent interruption of a system’s ability to perform a required

function under specified operating conditions.” (Isermann & Ballé 1997).

failure2 An incident or event where the product does not perform functions (esp. critical

functions) within in specified limits. e.g. the product did not meet its

requirements.

fault1 A fault is an abnormal condition, or other unacceptable state of some subsystem

(or component) that will disallow the intended operation. The part or subsystem

did not meet its requirements. See also abnormal condition, normal operating

condition.

fault2 A fault is represented an interrupt or exception on ARM processors that pass

control to handler of such an abnormal condition.

fault tolerant “The capability of software to provide continued correct execution in the presence

of a defined set of microelectronic hardware and software faults.” [ANSI/UL

1998]

firmware A program permanently recorded in ROM and therefore essentially a piece of

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 152

hardware that performs software functions.

flash A type of persistent (non-volatile) storage media.

frequency monitoring “a fault/error control technique in which the clock frequency is compared with an

independent fixed frequency” [IEC 60730-1]

function The “specific purpose of an entity or its characteristic action” [IEC 61499-1] That

is, what the product is intended to do, and/or what role it is to serve.

function block A self-contained unit with specific functionality

functional hazard analysis An “assessment of all hazards against a set of defined hazard classes” [IEC 62396-

1 3.21]

see also hazard analysis

hard fault A type of microcontroller fault.

harm A “physical injury or damage to health” [ISO 12100-1:2003]

hazard A “potential source of physical injury to persons.”

hazard analysis The “process of identifying hazards and analysing their causes, and the derivation

of requirements to limit the likelihood and consequences of hazards to an

acceptable level” [IEC 62280 section 3.1.24]

see also functional hazard analysis, preliminary hazard analysis, risk analysis

hazard class Energy (electric: voltage, current, electric & magnetic fields, radiation, thermal

energy, vibration/torsion/kinetic energy/force, acoustic), biological & chemical,

operational (function and use error), are informational (labeling, instructions,

warnings, markings) [ISO 14971]

hazard list A list of all identified hazards that a product may present.

high-level specification System specification, customer inputs, marketing inputs, etc.

identifier A label that can refer to product, specific version of the product, a document,

requirement, test, external document, or comment.

initialization Places each of the software and microcontroller elements into a known state;

performed at startup.

input comparison “a fault/error control technique by which inputs that are designed to be within

specified tolerances are compared.” [IEC 60730-1]

integrity “The degree to which a system or component prevents unauthorized access to, or

modification of, computer programs or data.” [ANSI/UL 1998]

integrity check Checks to see that a storage unit has retained its data contents properly and that the

contents have not changed unintentionally.

internal fault condition A programmable element resets for a reason other than a power-on reset; or a fault

occurs with any programmable-element, or power supervisor; or a self-test did not

pass.

interface An interface is a defined method of accessing functionality. An object may

support several interfaces.

key responsibility Specifies a functionality that a module is responsible for. It is like a capability

requirement.

non-maskable interrupt A type of microcontroller fault.

non-volatile memory A storage mechanism that will preserve information without power.

parameter A controllable quantity for a property.

parity check A simple form of error detection. Each byte in SRAM has an extra check bit that

can catch memory errors.

peripheral lock The microcontroller’s peripheral registers can be locked, preventing modification

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 153

until microcontroller reset.

power management An “automatic control mechanism that achieves the ... input power consistent with

a pre-determined level of functionality” [IEC 62542 5.10]

power on reset A type of microcontroller reset that occurs when power is applied to the

microcontroller; release from reset allows software to execute.

preliminary hazard analysis “This evaluates each of the hazards contained in the [preliminary hazard list], and

should describe the expected impact of the software on each hazard.”

programmable component “any microelectronic hardware that can be programmed in the design center, the

factory, or in the field.” [ANSI/UL 1998] This includes FPGAs, microcontrollers,

microprocessors, and so on.

programmable system “the programmable component, including interfaces to users, sensors, actuators,

displays, microelectronic hardware architecture,” and software [ANSI/UL 1998]

protective control A control whose “operation … is intended to prevent a hazardous situation during

abnormal operation of the equipment” [IEC 60730-1]

protective electronic circuit An “electronic circuit that prevents a hazardous situation under abnormal

operating conditions” [IEC 60335]

quality management
system

A “management system with which an organization will be directed with regard to

product quality” [IEC 60194 10.141]

realization An implementation, or a mathematical model or design that has the target input-

out behaviour and can be directly implemented.

redundant monitoring “the availability of two independent means such as watchdog devices and

comparators to perform the same task” [IEC 60730-1]

requirement An “expression ... conveying objectively verifiable criteria to be fulfilled and from

which no deviation is permitted " [ISO/IEC Directives, Part 2, 2016, 3.3.3]

requirements specification A set of requirements

risk “a measure that combines the likelihood that a system hazard will occur, the

likelihood that an accident will occur and an estimate of the severity of the worst

plausible accident.” [UCRL-ID-1222514]

risk analysis A “systematic use of available information to identify hazards and to estimate the

risk” [ISO 14971:2007 2.17]

risk management The “systematic application of management policies, procedures and practices to

the tasks of analyzing, evaluating and controlling risk” [ISO 14971:2007 2.22]

safe state A state that the equipment may be placed into where the relevant risks have been

addressed to an acceptable risk index.

safety-critical function A “function(s) required … the loss of which would cause the tool to function in

such a manner as to expose the user to a risk that is in excess of the risk that is

permitted … under abnormal conditions” [EN 62841]

safety-related function “Control, protection, and monitoring functions which are intended to reduce the

risk of fire, electric shock, or injury to persons.” [ANSI/UL 1998]

safety-related control
functions

A “control function … that is intended to maintain the safe condition of the

machine or prevent an immediate increase of the risk(s)” [IEC 60204-32 section

3.62]

note: not all are safety critical functions.

signal Often has an active and deactivated state; forms can include a digital logic signal

(which may be active high, or active low), an analog signal, some logical state

conveyed by a communication method, etc.

single event upset An ionizing particle flipped a bit or transistor state

single wire debug An electrical debugging interface for the ARM Cortex microcontrollers.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 154

software development
lifecycle

“conceptual structure spanning the life of the software from definition of its

requirements to its release” [ISO/IEC 12207 3.11]

software risk analysis A risk analysis applied to the software

software safety
requirement

A safety requirement applied to the function or operation of software

test monitoring “the provision of independent means such as watchdog devices and comparators

which are tested at start up or periodically during operation” [IEC 60730-1]

test report A report of test outcomes describing how a product performs under test.

test requirement A requirement that defines what a test must do for a product must pass the test.

test specification A requirements specification that describes a set of tests intended to check that the

product meets it requirements. This may be in the form of test requirements –

what the tests are to do – and test procedures.

to be determined The information is not known as of the writing but will need to be known.

traceability Ability to follow the steps from output back to original sources. For products, this

allows tracing all of the product’s design and features back to the original

documents approved by the company. For information, this allows tracing to

measurements, methodology and standards.

trace matrix A tool that is used to identify high level requirements that are not realized by a

low-level requirement or design element; and low-level requirements or design

requirements that are not driven by a high-level requirement.

validation Check that the product meets the user’s specification when the item is used as an

element of the product

verification Checking that an item meets its specification

watchdog reset A microcontroller reset triggered by the expiration of a watchdog timer.

watchdog timer A hardware timer that automatically resets the microcontroller if the software is

unable to periodically service it.

white-box testing Testing technique focusing on testing functional requirements (and other

specifications), with an examination of the internal structure or workings of the

item.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 155

APPENDIX B

Product Standards

This appendix provides further, supplemental discussion of standards.

74. STANDARDS

I did not provide a definition of “standard” earlier. Circular No A-119 provides a useful

definition of technical standard, being that a standard that includes:

1. [The] common and repeated use of rules, conditions, guidelines or characteristics for

products or related processes and production methods, and related management

systems practices[; and]

2. The definition of terms;

classification of components;

delineation of procedures;

specification of dimensions, materials, performance, designs, or operations;

measurement of quality and quantity in describing materials, processes, products,

systems, services, or practices;

test methods and sampling procedures; or

descriptions of fit and measurements of size or strength.

74.1. OTHER IMPORTANT SOFTWARE SAFETY STANDARDS

DO-178C is the aerospace industry’s software quality standard. It employs five levels

(instead of 3) and in descending order of concern (as opposed to the IEC 60730’s & 62304

ascending order):

 Level A for Catastrophic

 Level B for Hazard/Severe

 Level C for Major

 Level D for Minor

 Level E for no effect

NASA-STD-8719.13 is NASA’s software assurance standard. It classifies software criticality

in descending level of concern, based on its role and/or complexity. This classification is

based on MIL-STD-882C (the last revision to have such a classification).

 Category IA. “Partial or total autonomous control of safety-critical functions by

software[; or] Complex system with multiple subsystems, interacting parallel

processors, or multiple interfaces[; or] Some or all safety-critical software functions

are time critical exceeding response time of other systems or human operator[; or]

Failure of the software, or a failure to prevent an event, leads directly to a hazard's

occurrence.”

OMB Circular No A-

119, Revised

OMB (US

Government) 1998

Feb 10

DO-178C, Software

Considerations in

Airborne Systems and

Equipment

Certification, RTCA,

Inc. 2012 Jan 5

NASA-STD-8719.12.,

NASA Software Safety

Standard, Rev C 2013-

5-7

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 156

 Category IIA & IIB. “Control of hazard by software but other safety systems can

partially mitigate. Software detects hazards, notifies system of need for safety

actions.[or] Moderately complex with few subsystems and/or a few interfaces, no

parallel processing[; or] Some hazard control actions may be time critical but do not

exceed time needed for adequate human operator or automated system response.[; or]

Software failures will allow, or fail to prevent, the hazard's occurrence. “

 Category IIIA & IIIB. “Several non-software mitigating systems prevent hazard if

software malfunction[; or] Redundant and independent sources of safety-critical

information[; or] Somewhat complex system, limited number of interfaces[; or]

Mitigating systems can respond within any time critical period[; or] Software issues

commands over potentially hazardous hardware systems, subsystems or components

requiring human action to complete the control function.”

 Category IV. “No control over hazardous hardware. No safety-critical data generated

for a human operator. Simple system with only 2-3 subsystems, limited number of

interfaces. Not time-critical.”

NASA-STD-8739.8 is NASA’s software quality standard. It classifies software criticality in

descending level of concern, but based on a classification of intended use rather than hazard:

 Class A Human Rated

 Class B Non-Human Space rated

 Class C Mission support software

 Class D Analysis and Distribution software

 Class E Development support

75. PRODUCT STANDARDS

75.1. TYPES OF ISO SAFETY & PRODUCT STANDARDS

ISO 12100-1:2003 proposes organizing standards into a hierarchy of how broadly or

specifically they apply.

 Basic safety standards (type A), give generic concepts & principles applicable to all

machinery of a class. (ISO 12100 is itself a type A standard)

 Generic safety standards address wide range of machinery, but focus on a narrow area

of safety (type-B),

o Type B1 are those that focus on safety “aspect” – some safe operating

region often defined along a physical dimension

o Type B2 are those that focus on safeguards or mechanisms

 Standards for groups or a particular machine (type C) are the narrowest

75.2. TYPES OF IEC SAFETY STANDARDS

IEC safety standards are similarly grouped, from broadest to narrowest:

 Basic safety publications give general safety provisions, generic concepts & principles

applicable to many products.

NASA-STD-8739.8,

“Software Assurance

Standard” NASA

Technical Standard

8739.8 2004, 2004 Jul

28

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 157

 Group safety publications address all safety aspects of a specific group of products

 Product publication for “a specific product or group of related products” [IEC 2011]

An extra, informal, variant is that a country (or region) may adopt the standards, modifying

them in the process. This is important as these are the ones recognized (accepted) for the

country or region.

75.3. PRODUCT STANDARDS

The table below summarizes how several safety standards adapt software safety-related

material from other standards:

Std Adapts Type Sector Notes

EN/ISO 13849 IEC 61508 B1 machine

control

“Safety of machinery - Safety-related Parts of Control

Systems” Uses PL risk

ISO 26262 IEC 61508 Group Automotive “Road Vehicles Functional Safety” Applies ASIL to

automotive electrical/electronic systems

EN 50128:2011 Group Railway “Railway applications. Communication, signaling and

processing systems.” (includes software)

EN 60601 Group Medical Medical device product requirements

UL 61010 Safety Requirements for Electrical Equipment for

Measurement, Control, and Laboratory Use - Part 1:

General Requirements, 2015 May 11

IEC 61508 DIN 12950 Basic Adapted risk assessment from DIN 12950

IEC 61511 IEC 61508 Group Industrial

process

“Functional safety - Safety instrumented systems for the

process industry sector.”

IEC 61513:2001 IEC 61508 “Nuclear power plants - Instrumentation and control for

systems important to safety - General requirements for”

IEC/EN 62061 IEC 61508 Group Machinery “Safety of machinery: Functional safety of electrical,

electronic and programmable electronic control

systems,”

IEC 62279 IEC 61508 Railway

IEC 62841 IEC 60730 Group Garden

appliances

“Electric motor-operated hand-held tools, transportable

tools and lawn and garden machinery - Safety - Part 1:

General requirements”

76. REFERENCES AND RESOURCES

IEC, Basic Safety Publications, 2011

IEC, Basic Safety Publications: Tools

Table 41: Safety

standards and where

they adapt from

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 158

APPENDIX C

Floating-point

precision

This appendix summarizes the limits of precision employing a floating-point representation.

Floats have some corner cases, and loss of precision.

 There is a -0 with floats. IEEE 754 requires that zeros be signed.

 Floats can have signed infinity (+INF, and –INF)

 Floats can be NAN; there are several different encodings for NAN. (The exponent is

zero, and significand is non-zero)

 Division by zero can throw exception, and/or give a NAN as a result.

 Division by non-zero numbers can also give a NAN, such as denormals.

 Due to subtleties of precision and other factors, two floating point values must not be

compared for equality or inequality using == or !=.

 Floats are not associative. The order of addition matters. Adding numbers in

different orders can give differing results.

 Float values can be correctly sorted by treating the format as 32-bit integers.

Parameter Value

maximum value 3.402823 × 1038

minimum value -3.402823 × 1038

From To Precision

−16777216 16777216 can be exactly represented

−33554432 −16777217 rounded to a multiple of two

16777217 33554432 rounded to a multiple of two

-2
n+1

 -2
n
 -1 rounded to a multiple of 2n-23; n > 22

2
n
 +1 2

n+1
 rounded to a multiple of 2n-23; n > 22

-∞ 2
128

 rounded to -INF

2
128

 ∞ rounded to +INF

Table 42: Float range

Table 43: Accuracy of

integer values

represented as a float

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 159

APPENDIX D

Bug Report

Template12

This Appendix describes the best means in which to file a bug report. A useful bug report is

written in simple, jargon free language, and structured using the inverted hierarchy.

77. OUTLINE OF A PROPER BUG REPORT

12 words 1 : Bug Header Information
1-5 words 1.1 : Product

2 words 1.2 : Classification
1-3 words 1.3 : Reproducibility

 1.4 : Version/Build Number
2 words 1.5 : Area of bug

< 20 words 2 : Bug Title & Description
< 20 words 2.1 : Title

 2.2 : Description
 2.3 : Requirements that are of interest or are relevant
 3 : Additional Information To Provide (General)
 3.1 : Configuration Information
 3.2 : Crashing Issues
 3.3 : Application resets
 3.4 : Hanging/Performance Issues
 3.5 : Screen shots, Scope Capture,
 4 : Contact Information
 5 : Product-specific Additional Information

The remainder of the

78. BUG HEADER INFORMATION

1.1: Product:

PC Programmer, Handheld, OurPeripheral, Implant, Telemetry Module, etc, whether it is a

first run engineering board, a second run engineering board, a first run production board, a

second run production board, etc

Include details such as the part number, or board assembly and serial number

1.2: Classification:

12 This appendix is adapted from Apple’s bug reporting form, as well as many others.

“The horror of that

moment,” the King

went on, “I shall

never, never forget!”

“You will, though,” the

Queen said, “if you

don't make a

memorandum of it”–

Lewis Carroll, Through

the Looking Glass

12 words

1 to 5 words

2 words

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 160

Classify the bug appropriately (partly by its manifestation) so that we can properly prioritize

the problem:

 Crash/Hang/Data Loss: Bugs which cause a machine to crash, resulting in an

irrecoverable hang, or loss of data.

 Performance: Issues that reduce the performance or responsiveness of an application.

 Usability: A cosmetic issue, or an issue with the usability of an application.

 Serious bug: Functionality is greatly affected and has no workaround.

 Other bug: A bug that has a workaround.

 Unexpected behaviour: a bug that not only has a work around

 Feature (new): Request for a new feature

 Enhancement: Request for an enhancement to an existing feature.

1.3: Reproducibility

Let us know how frequently you can reproduce this problem.

1.4: Version/Build Number:

Provide the version of firmware / software you are using. (If it is an engineering change to a

release version, please note that)

1.5 Area of bug:

This is how the bug manifests itself, or where it has the observable effect:

 Communication

 Therapy Behaviour

 Input to output logic behaviour

 Preferences

 Recharge

 Incorrect or inaccurate results: input/output is wrong, or provides inaccurate

information

 Corruption – data is corrupted, altered, lost or destroyed

 Responsiveness, Speed or Performance degradation, efficiency defects

 Power: poor battery life, high power consumption, degradation, efficiency defects

 Increased resource usage in other areas

 Other device behaviour

 It crashes my Handheld / OurPeripheral / Telemetry Module / LabPC / Display Unit

79. BUG TITLE AND DESCRIPTION

2.1: Problem Report Title:

The ideal problem title is clear, concise, succinct and informative. It should include the

following:

 Build or version of the firmware on which the problem occurred

 Verb describing the action that occurred

 Explanation of the situation which was happening at the time that the problem

occurred

Method of

manifestation is the

observable effect

1 to 3 words

2 words

<20 words

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 161

 In case of a crash or hang, include the symbol name

The title should also:

 Be objective and clear (and refrain from using idiomatic speech/colloquialisms/slang)

 Include keywords or numbers from any error messages you may be receiving

 Not employ vague terms such as “failed”, “useless”, “crashed”, “observed” etc....

The following examples demonstrate the difference between a non-functional title and a

functional title:

Example 1:

Non-functional title: Handheld Crashed.

Functional title: Handheld gave a watchdog reset while performing a lead

impedance measurement

Example 2:

Non-functional title: Failed test

Functional title: OurPeripheral return error ErrOutOfSpace when performing

recharge test.

2.2: Description:

The description includes:

 A Summary

 Steps to Reproduce

 Expected Results

 Actual Results

 Workaround, and

 Regression/Isolation

 Relevant requirements.

Summary:

Recap the problem title and be explicit in providing more descriptive summary information.

Provide what happened, what you were doing when it happened, and why you think it's a

problem. If you receive an error message, provide the content of the error message (or an

approximation of it).

Provide specifics and avoid vague language or colloquialisms. Instead of using descriptive

words or phrases when something “looks bad,” “has issues,” “is odd,” “is wrong,” “is acting

up,” or “is failing,” be concise and describe how something is looking or acting, why you

believe there is a problem, and provide any error messages that will support the problem being

reported.

Example 1:

Non-functional description: When printing, nothing happens. Application doesn't

work.

Functional description: Print Menu item enabled, print dialog box appears,

print button enabled, but progress dialog box doesn't

appear.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 162

Example 2:

Non-functional description: Handheld is slow.

Functional description: Handheld is slow when incrementing therapy

amplitude (provide durations)

If there is a clear safety implication, specify it (otherwise do not).

Steps to Reproduce:

Describe the step-by-step process to reproduce the bug, including any non-default

preferences/installation, and the system configuration information. Note: It is better to include

too much information than not enough, as this reduces the amount of back-and-forth

communications. Note: Be very specific and be sure to provide details, as opposed to high-

level actions. Test cases with clear & concise steps to reproduce that will enable us to

reproduce this and fix.

When does the problem occur? For example:

 Does it occur after power on?

 Does it occur after unlock?

 Does it occur after power off and lock?

Important points to note when providing steps to reproduce are:

 Include information about any preferences that have been changed from the

defaults.

Expected Results:

Describe what you expected to happen when performing the steps to reproduce.

Actual Results:

Explain what actually occurred.

With error codes try to include the text name of the error code

Bad: error 0x12

Good: ErrParameterOutOfRange (0x12)

Workaround:

If you have found a workaround for this problem, describe it.

Regression/Isolation:

Note any other configurations in which this issue was reproducible. Include details if it is new

to this build, or no regression testing was done.

If there are other steps that are similar to those above, but do not create an undesired outcome,

please note those. We can use this information to help resolve the issue.

2.3: Requirements that are of interest or are relevant

80. ADDITIONAL INFORMATION REQUIREMENTS (GENERAL)

Reports from developers should include:

 The hardware configuration

 The “preferences” configuration

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 163

 The device bonding or pairing configuration

 The “manufacturing data” configuration

 The embedded device(s) configuration

 If reporting an error dialog message or UI bug, provide screen shots

 Log file

Reports from developers should include

 A complete enumeration of the Revision Ids of the source files

Reports from test stations should include:

 The software / firmware version

 Event trace (e.g. log of the connection). Please provide the smallest trace

possible that captures the issue. As traces may contain a lot of spurious

information that doesn't pertain to the issue at hand, it is vital to the bug solving

effort to remove distracting volume.

The generation of this information can be done in an automated fashion.

3.2: Crashing Issues:

A crash might include a NMI, Watchdog, Stack Underflow, Stack Overflow, memory fault,

bus fault, usage fault, or Hard Fault. Extra information is essential. Please give us:

 The fault register values

 Call stack trace (if possible)

In addition to all the above, provide any information regarding what you were doing around

the time of the problem.

NOTE: If you're able to reproduce the crash the exact same way each time and the ___ looks

identical in every instance, only one crash report is required. In instances where the crash

doesn't look identical, file separate reports with one crash log submitted per bug.

3.4: Hanging/Performance Issues:

If you are experiencing a “hang” (includes freeze, slow data transfer), a sample of the

application while it is in the hung state is required.

3.5: Screen shots, Scope Traces and Waveform capture:

SCREEN SHOTS. Provide a screen shot when it will help clarify the bug report. In addition to

providing any screen shots to error or dialog messages, be sure to also type the text of the

error/dialog message you're seeing in the description of the bug report (so that the contents of

the message are searchable. If there are steps involved, a sequence of screen shots, or a movie

is always appreciated. Be sure to write down the steps associated with each screen shot.

SCOPE TRACE. When working with electrical signals, please provide scope trace or screen shot

of the oscilloscope. Please provide a diagram of the setup, and a description where in the

diagram or schematic the signals were measured.

81. CONTACT INFORMATION

Be sure to include the contact information of who found the bug. Although this sounds

implicit in an email or trouble tracking system (e.g. ClearQuest, Jira), too often the bug

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 164

reporter is different than the one who found it. By including the contact information we’ll be

able to correspond with them as we investigate the issue.

82. PRODUCT-SPECIFIC ADDITIONAL INFORMATION

When submitting a bug report against certain tools, be sure to provide the following additional

information:

 Build number & version. Put the build number at the beginning of your title as such:

1.5.0_06-112: Title Here

If your setup is non-standard, indicate that in the bug report.

Handheld Power Management (sleep/wake) issues:

 Be aware of what is plugged into the Handheld

When submitting a bug report involved a sealed in the can device, be sure to provide:

 Whether the battery is connected or not

 Was it in saline?

 Were leads attached?

 Which version of firmware?

 Was an OurPeripheral being used – which version?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 165

APPENDIX E

Types of Defects

This Appendix describes a system of categorizing bugs.

83. OVERVIEW

The analysis of a bug is intended to gather information about its causes and underlying defects

(there may be many) and provide a basis to disposition or prioritize repairs.

Bugs are classified along four dimensions by

1. Method of manifestation.

2. Type of Defect

3. Implication

4. Means of testing

The bug analysis should try included a number of attributes about how the bug manifests

itself. And include a chain of analysis to other potential underlying defects.

84. CLASSIFYING THE TYPE OF DEFECT

The types of defects include:

 Hardware problem

 Hardware misuse

 Storage / access partition violation

 Resource allocation issues

 Arithmetic, numerical bug

 Logic errors

 Syntax errors

 Improper use of API’s – violates how an API should be used, including calling

sequence, parameter range, etc. Errors in interacting with others in calls, commands,

macros, variable settings, control blocks, etc.

 State errors

 Concurrency

 Interaction issues

 Graphic errors

 Security issue – disclosure, alteration/destruction/insertion

Defect is the design or

implementation

mistake

Method of

manifestation is the

observable effect

Various sources were

used in the

preparation of this.

“A comparative study

of industrial static

analysis tools (Extend

Version)” Par

Emanuelsoon, Ulf

Nilsson, January 7

2008

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 166

84.1. HARDWARE PROBLEM

 Missing component

 Component incorrectly mounted

 Component broken

o Unable to communicate

o Does not pass self test

o Does not operate correctly.

84.2. HARDWARE MISUSE

 Power is too high, too low, or off

 Power transition is too fast

 Truncated addresses

 Stack overrun

84.3. STORAGE / ACCESS PARTITION VIOLATIONS

STORAGE / ACCESS PARTITION VIOLATION may have attributes of the storage violation:

 Type of access: read, write

 Location of the segment, and access: stack, or heap

 The boundary violated: above or below the segment/partition.

 How far outside of the segment was the access?

 How much data is affected with the access?

 Stride: were the access violations in a large continuous span, or were there gaps

between the accesses?

An access violation can be classified into one of:

 NULL pointer dereference

o Is a pointer possibly NULL before its use? Is it checked before use?

o Is it checked for NULL after its use?

 Wild pointer dereference

 Pointer arithmetic error

o Pointer does not point to a meaningful location

o Pointer points outside of the bounds of its referent.

 Improper memory allocation

 Using memory that has not been initialized

o Array cell being dereferenced in a fetch (or fetch-n-modify) operation has

not been initialized.

o Pointer being dereferenced has not been initialized (a variation on the use of

a variable that has not been initialized)

 Aliasing

o Two pointers to the same region. Especially without proper volatile.

Defect is the design or

implementation

mistake

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 167

o Pointer to variable storage. Especially without proper volatile.

o Pointer to an array is assigned to point to second, smaller array

 Access (segmentation) violation – using something not allowed to

o Buffer overflow / overrun

o Array is indexed outside of its upper or lower bound.

o Pointer points outside of the bounds of its referent.

o Possible causes may include pointer arithmetic errors

 Access alignment violation – e.g. having something on a odd address that must be

align on 16 byte boundary

 Reference of pointer being dereferenced in a fetch (or fetch-n-modify) operation has

not been initialized.

 Function pointer does not point to a function – or points to a function with a different

signature.

 Casting an integer in a pointer or pointer-union when it is smaller / larger

 Use of arrays (especially large arrays) on stack. This can happen when returning a

struct, or array

 Use of large strings on stack. This can happen when returning a struct, or array

 Return of a pointer to the local stack

Possible causes of these

 Earlier access violation

 Uninitialized value, variable or field used as pointer

 Arithmetic issues, for potential sources of erroneous index and pointer calculations

o Conversion created incorrect value. Check implicit and explicit values for

proper widening and conversion.

 Input value wrong, out of range, or does not meet implicit constraints

 String or other data structure missing a termination, e.g. a NULL terminator

 The allocation was smaller than the amount of data to process

Possible fixes and mitigations

 For large strings and arrays passed on stack, pass a pointer to the array

 Add parameter checking and return a value

 Employ sentinel values, and canaries to detect inconsistencies and misuse earlier

84.4. RESOURCE AND REFERENCE MANAGEMENT ISSUES

RESOURCE AND REFERENCE MANAGEMENT ISSUES includes leaks and resources that are not

released when they are no longer used:

 Use resource after free

 Double free

 Mismatch array new / delete

 Memory leak (use more memory over time)

o Constructor / Destructor leaks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 168

o Bad deletion of arrays

 Temporary files

 Resource – esp. memory and file handle – leaks

 Database connection leaks

 Custom memory and network resource leaks

84.5. ARITHMETIC, NUMERICAL BUG & INCORRECT CALCULATIONS

Calculation bugs can include:

 Relying on operator precedence or not understanding operator precedence.

 Overflow or underflow

 Invalid use of negative variables

 Loss of precision. These can come from using the wrong size type or casting to an

inappropriate type:

o Underflow – a number too small

o Overflow – bigger than can be represented, dropping the most significant

bits

o Truncation – dropping the least significant bits

 Inadequate precision, accuracy, or resolution of type

 Computation is inaccurate. Accuracy issues relate from the formulae used.

 Numerically unstable algorithm

o Using an IIR with an order higher than 2

o PID lacks anti-windup (e.g. timers)

o PID lacks dead-band dampening

 Equality check is incorrect

o Check for literal zero rather than within epsilon around zero

o Check equal to NaN, rather than using isnan()

 Basic inappropriate values for an operation

o Using a Not-A-Number

o Driving by zero

o Performing an operation, such as logarithm and sqrt(), on a negative number

o Shift left by more than the size of the target

o Shift operand is negative

o Shift LHS is negative

84.6. ERRORS IN LOGIC

Errors in logical can include:

 Illegal values to operations

 Not checking taint or validating values properly

 Wrong order of parameters in a call

 Variables that have not been initialized

 Dead code cause by logical errors

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 169

 Under run – not sending enough on time

 Macros

 Dynamic-link and loading bugs

 Infinite loop / loss of forward progression; a procedure or loop does not terminate.

 Typo between variable and procedure names

 Error in internal check

 See API misuse

Logical errors can have three sub-classes of defects:

 Syntax errors

 Unused results

 Incorrect calculation

UNUSED RESULTS. Unreachable code (dead code) may indicate a logical or syntax error. Data

that is computed but not used may also indicate logical errors or misspellings. Data stored via

a pointer but is not used may indicate a problem.

84.7. API OR COMPONENT INTERFACE MISUSE

Interface Misuse – violates how an API should be used, including calling sequence, parameter

range, etc. Errors in interacting with others in calls, commands, macros, variable settings,

control blocks, etc. A description of the interface should be concise, but provide enough

information to understand the intended used and limitations

 STL usage errors

 API error handling

 Misuse of sprintf, other varargs, and argv

84.8. ERROR HANDLING

 Uncaught fault / exception.

 Inadequate fault / exception handling.

 Not checking return values

 Not checking error values

84.9. SYNTAX ERRORS

SYNTAX ERRORS may produce some of the logical errors above:

 Use of the comma operator

 Misplacement of “;”, especially in conditional statements

 Forgotten breaks.

 The use of variables that were not initialized with values

 Return statements without defined value – either the return is implicit, no value is

specified, or the return accesses a variable that has not been initialized.

 Return of a pointer to the local stack

MISRA has

recommended these

checks

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 170

 Inconsistent return values for input

84.10. STATE ERRORS

 Results in wrong state

 Transition from state A to state B is not allowed

 Does not handle event in given state

 Handles event incorrectly in given state.

84.11. CONCURRENCY

 Deadlocks

 Double locking

 Missing lock releases

 Release order does not match acquisition order of other thread means dead lock, etc.

(Aka reversed order of clocking)

o Static / dynamic analysis should check the lock order (for several locks)

 Blocking call misuse

 Associate variable/register/object access with specific locks

 Lock contention

84.12. INTERACTION ISSUES

 Thread prioritizations

 Contention for resources (including, but not limited to lock contention)

 Data rate is incorrect / mismatch

 Differing process rates

 Sourcing events faster than they can be processed

 Long communication and processing pipelines

 Timing violation, too soon / too late

o Timer incorrectly set

o Timer stopped

o Timer reset

 Sequence of operation is incorrect

o Wrong command sent

o Missing command

 Wrong response is sent

 Sent to wrong party

 Format is wrong

 Length is wrong

 Misinterpreted

 Ignored command or response

 Mis-estimated state of other party

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 171

 Redundant interaction

84.13. GRAPHIC ERRORS

 Position incorrect

 Size incorrect / truncated

 Shape incorrect

 Parent / child relationship is incorrect

 Incorrect sibling order / tab order

 Color is wrong

 Text is wrong

 Graphic mismatch / pixels not refreshed

 Pixels not being refreshed / dirty rectangle issue

 Item is not visible when it should be

 Item is visible when it should not be

84.14. SECURITY VULNERABILITY

 Temporary files. Not using secure temporary files, file names.

 Missing / insufficient validation of malicious data and string input (see also taint

checking)

o SQL injection attacks

 Cross-site scripting attacks

 Format string vulnerabilities

 Faulty permission models – not a bug with access checks, but many with wrong

arrangement of access controls (it’s very hard to do bottom up)

 Incorrect use of chroot, access, and chmod.

 Bad passwords

 Dynamic-link and loading bugs

 Spoofing

 Race conditions and other concurrency issues

 Poor encryption

 Command injection

 Not checking values or their origins

 Race conditions with system calls

85. RESOURCES

ANSI/AAMI SW91:2018 – Classification of defects in health software

An interesting standard classifying defects giving each an identifier (coding), it includes a

mapping of other standards (such as FDA, and TR80002-1) to its classification. Worth a

look.

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 172

APPENDIX F

Code-Complete

Requirements Review

Checklists

Source: https://github.com/janosgyerik/software-construction-notes/tree/master/checklists-all

86. CHECKLIST: REQUIREMENTS

86.1. SPECIFIC FUNCTIONAL REQUIREMENTS

 Are all the inputs to the system specified, including their source, accuracy, range of values, and

frequency?

 Are all the outputs from the system specified, including their destination, accuracy, range of values,

frequency, and format?

 Are all output formats specified for web pages, reports, and so on?

 Are all the external hardware and software interfaces specified?

 Are all the external communication interfaces specified, including handshaking, error-checking, and

communication protocols?

 Are all the tasks the user wants to perform specified?

 Is the data used in each task and the data resulting from each task specified?

86.2. SPECIFIC NON-FUNCTIONAL (QUALITY) REQUIREMENTS

 Is the expected response time, from the user's point of view, specified for all necessary operations?

 Are other timing considerations specified, such as processing time, data-transfer rate, and system

throughput?

Adapted from

S T E V E N C .

M C C O N N E L L ,

C O D E C O M P L E T E ,

2 N D E D .

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is

Copyright (c) 1993-2004 Steven C. McConnell. Permission is hereby given to copy, adapt, and distribute

this material as long as this notice is included on all such materials and the materials are not sold,

licensed, or otherwise distributed for commercial gain.

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 173

 Is the level of security specified?

 Is the reliability specified, including the consequences of software failure, the vital information that

needs to be protected from failure, and the strategy for error detection and recovery?

 Is maximum memory specified?

 Is the maximum storage specified?

 Is the maintainability of the system specified, including its ability to adapt to changes in specific

functionality, changes in the operating environment, and changes in its interfaces with other software?

 Is the definition of success included? Of failure?

86.3. REQUIREMENTS QUALITY

 Are the requirements written in the user's language? Do the users think so?

 Does each requirement avoid conflicts with other requirements?

 Are acceptable trade-offs between competing attributes specified—for example, between robustness

and correctness?

 Do the requirements avoid specifying the design?

 Are the requirements at a fairly consistent level of detail? Should any requirement be specified in

more detail? Should any requirement be specified in less detail?

 Are the requirements clear enough to be turned over to an independent group for construction and still

be understood?

 Is each item relevant to the problem and its solution? Can each item be traced to its origin in the

problem environment?

 Is each requirement testable? Will it be possible for independent testing to determine whether each

requirement has been satisfied?

 Are all possible changes to the requirements specified, including the likelihood of each change?

86.4. REQUIREMENTS COMPLETENESS

 Where information isn't available before development begins, are the areas of incompleteness

specified?

 Are the requirements complete in the sense that if the product satisfies every requirement, it will be

acceptable?

 Are you comfortable with all the requirements? Have you eliminated requirements that are impossible

to implement and included just to appease your customer or your boss?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 174

APPENDIX G

Code-Complete Design

Review Checklists

Source: https://github.com/janosgyerik/software-construction-notes/tree/master/checklists-all

87. CHECKLIST: ARCHITECTURE

87.1. SPECIFIC ARCHITECTURAL TOPICS

 Is the overall organization of the program clear, including a good architectural overview and

justification?

 Are major building blocks well defined, including their areas of responsibility and their interfaces to

other building blocks?

 Are all the functions listed in the requirements covered sensibly, by neither too many nor too few

building blocks?

 Are the most critical classes described and justified?

 Is the data design described and justified?

 Is the database organization and content specified?

 Are all key business rules identified and their impact on the system described?

 Is a strategy for the user interface design described?

 Is the user interface modularized so that changes in it won't affect the rest of the program?

 Is a strategy for handling I/O described and justified?

 Are resource-use estimates and a strategy for resource management described and justified?

 Are the architecture's security requirements described?

 Does the architecture set space and speed budgets for each class, subsystem, or functionality area?

 Does the architecture describe how scalability will be achieved?

 Does the architecture address interoperability?

 Is a strategy for internationalization/localization described?

 Is a coherent error-handling strategy provided?

Adapted from

S T E V E N C .

M C C O N N E L L ,

C O D E C O M P L E T E ,

2 N D E D .

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is

Copyright (c) 1993-2004 Steven C. McConnell. Permission is hereby given to copy, adapt, and distribute

this material as long as this notice is included on all such materials and the materials are not sold,

licensed, or otherwise distributed for commercial gain.

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 175

 Is the approach to fault tolerance defined (if any is needed)?

 Has technical feasibility of all parts of the system been established?

 Is an approach to overengineering specified?

 Are necessary buy-vs.-build decisions included?

 Does the architecture describe how reused code will be made to conform to other architectural

objectives?

 Is the architecture designed to accommodate likely changes?

 Does the architecture describe how reused code will be made to conform to other architectural

objectives?

87.2. GENERAL ARCHITECTURAL QUALITY

 Does the architecture account for all the requirements?

 Is any part over- or under-architected? Are expectations in this area set out explicitly?

 Does the whole architecture hang together conceptually?

 Is the top-level design independent of the machine and language that will be used to implement it?

 Are the motivations for all major decisions provided?

 Are you, as a programmer who will implement the system, comfortable with the architecture?

87.3. CHECKLIST: UPSTREAM PREREQUISITES

 Have you identified the kind of software project you're working on and tailored your approach

appropriately?

 Are the requirements sufficiently well-defined and stable enough to begin construction (see the

requirements checklist for details)?

 Is the architecture sufficiently well defined to begin construction (see the architecture checklist for

details)?

 Have other risks unique to your particular project been addressed, such that construction is not

exposed to more risk than necessary?

88. CHECKLIST: MAJOR CONSTRUCTION PRACTICES

88.1. CODING

 Have you defined coding conventions for names, comments, and formatting?

 Have you defined specific coding practices that are implied by the architecture, such as how error

conditions will be handled, how security will be addressed, and so on?

 Have you identified your location on the technology wave and adjusted your approach to match? If

necessary, have you identified how you will program into the language rather than being limited by

programming in it?

88.2. TEAMWORK

 Have you defined an integration procedure, that is, have you defined the specific steps a programmer

must go through before checking code into the master sources?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 176

 Will programmers program in pairs, or individually, or some combination of the two?

88.3. QUALITY ASSURANCE

 Will programmers write test cases for their code before writing the code itself?

 Will programmers write unit tests for their code regardless of whether they write them first or last?

 Will programmers step through their code in the debugger before they check it in?

 Will programmers integration-test their code before they check it in?

 Will programmers review or inspect each others' code?

88.4. TOOLS

 Have you selected a revision control tool?

 Have you selected a language and language version or compiler version?

 Have you decided whether to allow use of non-standard language features?

 Have you identified and acquired other tools you'll be using editor, refactoring tool, debugger, test

framework, syntax checker, and so on?

89. CHECKLIST: DESIGN IN CONSTRUCTION

89.1. DESIGN PRACTICES

 Have you iterated, selecting the best of several attempts rather than the first attempt?

 Have you tried decomposing the system in several different ways to see which way will work best?

 Have you approached the design problem both from the top down and from the bottom up?

 Have you prototyped risky or unfamiliar parts of the system, creating the absolute minimum amount

of throwaway code needed to answer specific questions?

 Has you design been reviewed, formally or informally, by others?

 Have you driven the design to the point that its implementation seems obvious?

 Have you captured your design work using an appropriate technique such as a Wiki, email, flipcharts,

digital camera, UML, CRC cards, or comments in the code itself?

89.2. DESIGN GOALS

 Does the design adequately address issues that were identified and deferred at the architectural level?

 Is the design stratified into layers?

 Are you satisfied with the way the program has been decomposed into subsystems, packages, and

classes?

 Are you satisfied with the way the classes have been decomposed into routines?

 Are classes designed for minimal interaction with each other?

 Are classes and subsystems designed so that you can use them in other systems?

 Will the program be easy to maintain?

 Is the design lean? Are all of its parts strictly necessary?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 177

 Does the design use standard techniques and avoid exotic, hard-to-understand elements?

 Overall, does the design help minimize both accidental and essential complexity?

90. CHECKLIST: CLASS QUALITY

90.1. ABSTRACT DATA TYPES

 Have you thought of the classes in your program as Abstract Data Types and evaluated their interfaces

from that point of view?

90.2. ABSTRACTION

 Does the class have a central purpose?

 Is the class well named, and does its name describe its central purpose?

 Does the class's interface present a consistent abstraction?

 Does the class's interface make obvious how you should use the class?

 Is the class's interface abstract enough that you don't have to think about how its services are

implemented? Can you treat the class as a black box?

 Are the class's services complete enough that other classes don't have to meddle with its internal data?

 Has unrelated information been moved out of the class?

 Have you thought about subdividing the class into component classes, and have you subdivided it as

much as you can?

 Are you preserving the integrity of the class's interface as you modify the class?

90.3. ENCAPSULATION

 Does the class minimize accessibility to its members?

 Does the class avoid exposing member data?

 Does the class hide its implementation details from other classes as much as the programming

language permits?

 Does the class avoid making assumptions about its users, including its derived classes?

 Is the class independent of other classes? Is it loosely coupled?

90.4. INHERITANCE

 Is inheritance used only to model “is a” relationships?

 Does the class documentation describe the inheritance strategy?

 Do derived classes adhere to the Liskov Substitution Principle?

 Do derived classes avoid “overriding” non-overridable routines?

 Are common interfaces, data, and behavior as high as possible in the inheritance tree?

 Are inheritance trees fairly shallow?

 Are all data members in the base class private rather than protected?

90.5. OTHER IMPLEMENTATION ISSUES

 Does the class contain about seven data members or fewer?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 178

 Does the class minimize direct and indirect routine calls to other classes?

 Does the class collaborate with other classes only to the extent absolutely necessary?

 Is all member data initialized in the constructor?

 Is the class designed to be used as deep copies rather than shallow copies unless there's a measured

reason to create shallow copies?

90.6. LANGUAGE-SPECIFIC ISSUES

 Have you investigated the language-specific issues for classes in your specific programming

language?

91. CHECKLIST: THE PSEUDOCODE PROGRAMMING PROCESS

 Have you checked that the prerequisites have been satisfied?

 Have you defined the problem that the class will solve?

 Is the high level design clear enough to give the class and each of its routines a good name?

 Have you thought about how to test the class and each of its routines?

 Have you thought about efficiency mainly in terms of stable interfaces and readable implementations,

or in terms of meeting resource and speed budgets?

 Have you checked the standard libraries and other code libraries for applicable routines or

components?

 Have you checked reference books for helpful algorithms?

 Have you designed each routine using detailed pseudocode?

 Have you mentally checked the pseudocode? Is it easy to understand?

 Have you paid attention to warnings that would send you back to design (use of global data,

operations that seem better suited to another class or another routine, and so on)?

 Did you translate the pseudocode to code accurately?

 Did you apply the PPP recursively, breaking routines into smaller routines when needed?

 Did you document assumptions as you made them?

 Did you remove comments that turned out to be redundant?

 Have you chosen the best of several iterations, rather than merely stopping after your first iteration?

 Do you thoroughly understand your code? Is it easy to understand?

92. CHECKLIST: A QUALITY-ASSURANCE PLAN

 Have you identified specific quality characteristics that are important to your project?

 Have you made others aware of the projects quality objectives?

 Have you differentiated between external and internal quality characteristics?

 Have you thought about the ways in which some characteristics may compete with or complement

others?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 179

 Does your project call for the use of several different error-detection techniques suited to finding

several different kinds of errors?

 Does your project include a plan to take steps to assure software quality during each stage of software

development?

 Is the quality measured in some way so that you can tell whether its improving or degrading?

 Does management understand that quality assurance incurs additional costs up front in order to save

costs later?

93. CHECKLIST: EFFECTIVE PAIR PROGRAMMING

 Do you have a coding standard to support pair programming that's focused on programming rather

than on philosophical coding-style discussions?

 Are both partners participating actively?

 Are you avoiding pair programming everything, instead selecting the assignments that will really

benefit from pair programming?

 Are you rotating pair assignments and work assignments regularly?

 Are the pairs well matched in terms of pace and personality?

 Is there a team leader to act as the focal point for management and other people outside the project?

94. CHECKLIST: TEST CASES

 Does each requirement that applies to the class or routine have its own test case?

 Does each element from the design that applies to the class or routine have its own test case?

 Has each line of code been tested with at least one test case? Has this been verified by computing the

minimum number of tests necessary to exercise each line of code?

 Have all defined-used data-flow paths been tested with at least one test case?

 Has the code been checked for data-flow patterns that are unlikely to be correct, such as defined-

defined, defined-exited, and defined-killed?

 Has a list of common errors been used to write test cases to detect errors that have occurred frequently

in the past?

 Have all simple boundaries been tested – maximum, minimum, and off-by-one boundaries?

 Have compound boundaries been tested – that is, combinations of input data that might result in a

computed variable that is too small or too large?

 Do test cases check for the wrong kind of data – for example, a negative number of employees in a

payroll program?

 Are representative, middle-of-the-road values tested?

 Is the minimum normal configuration tested?

 Is the maximum normal configuration tested?

 Is compatibility with old data tested? And are old hardware, old versions of the operating system, and

interfaces with old versions of other software tested?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 180

 Do the test cases make hand-checks easy?

95. CHECKLIST: DEBUGGING REMINDERS

95.1. TECHNIQUES FOR FINDING DEFECTS

 Use all the data available to make your hypothesis

 Refine the test cases that produce the error

 Exercise the code in your unit test suite

 Use available tools

 Reproduce the error several different ways

 Generate more data to generate more hypotheses

 Use the results of negative tests

 Brainstorm for possible hypotheses

 Narrow the suspicious region of the code

 Be suspicious of classes and routines that have had defects before

 Check code that’s changed recently

 Expand the suspicious region of the code

 Integrate incrementally

 Check for common defects

 Talk to someone else about the problem

 Take a break from the problem

 Set a maximum time for quick and dirty debugging

 Make a list of brute force techniques, and use them

95.2. TECHNIQUES FOR SYNTAX ERRORS

 Don't trust line numbers in compiler messages

 Don't trust compiler messages

 Don't trust the compilers second message

 Divide and conquer

 Find extra comments and quotation marks

95.3. TECHNIQUES FOR FIXING DEFECTS

 Understand the problem before you fix it

 Understand the program, not just the problem

 Confirm the defect diagnosis

 Relax

 Save the original source code

 Fix the problem, not the symptom

 Change the code only for good reason

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 181

 Make one change at a time

 Check your fix

 Look for similar defects

95.4. GENERAL APPROACH TO DEBUGGING

 Do you use debugging as an opportunity to learn more about your program, mistakes, code quality,

and problem-solving approach?

 Do you avoid the trial-and-error, superstitious approach to debugging?

 Do you assume that errors are your fault?

 Do you use the scientific method to stabilize intermittent errors?

 Do you use the scientific method to find defects?

 Rather than using the same approach every time, do you use several different techniques to find

defects?

 Do you verify that the fix is correct?

 Do you use compiler warnings?

96. CHECKLIST: CODE-TUNING STRATEGY

96.1. OVERALL PROGRAM PERFORMANCE

 Have you considered improving performance by changing the program requirements?

 Have you considered improving performance by modifying the program's design?

 Have you considered improving performance by modifying the class design?

 Have you considered improving performance by avoiding operating system interactions?

 Have you considered improving performance by avoiding I/O?

 Have you considered improving performance by using a compiled language instead of an interpreted

language?

 Have you considered improving performance by using compiler optimizations?

 Have you considered improving performance by switching to different hardware?

 Have you considered code tuning only as a last resort?

96.2. CODE-TUNING APPROACH

 Is your program fully correct before you begin code tuning?

 Have you measured performance bottlenecks before beginning code tuning?

 Have you measured the effect of each code-tuning change?

 Have you backed out the code-tuning changes that didn't produce the intended improvement?

 Have you tried more than one change to improve performance of each bottleneck, i.e., iterated?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 182

97. CHECKLIST: CONFIGURATION MANAGEMENT

97.1. GENERAL

 Is your software-configuration-management plan designed to help programmers and minimize

overhead?

 Does your SCM approach avoid overcontrolling the project?

 Do you group change requests, either through informal means such as a list of pending changes or

through a more systematic approach such as a change-control board?

 Do you systematically estimate the effect of each proposed change?

 Do you view major changes as a warning that requirements development isn't yet complete?

97.2. TOOLS

 Do you use version-control software to facilitate configuration management?

 Do you use version-control software to reduce coordination problems of working in teams?

97.3. BACKUP

 Do you back up all project materials periodically?

 Are project backups transferred to off-site storage periodically?

 Are all materials backed up, including source code, documents, graphics, and important notes?

 Have you tested the backup-recovery procedure?

98. CHECKLIST: INTEGRATION

98.1. INTEGRATION STRATEGY

 Does the strategy identify the optimal order in which subsystems, classes, and routines should be

integrated?

 Is the integration order coordinated with the construction order so that classes will be ready for

integration at the right time?

 Does the strategy lead to easy diagnosis of defects?

 Does the strategy keep scaffolding to a minimum?

 Is the strategy better than other approaches?

 Have the interfaces between components been specified well? (Specifying interfaces isn't an

integration task, but verifying that they have been specified well is.)

98.2. DAILY BUILD AND SMOKE TEST

 Is the project building frequently – ideally, daily to support incremental integration?

 Is a smoke test run with each build so that you know whether the build works?

 Have you automated the build and the smoke test?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 183

 Do developers check in their code frequently – going no more than a day or two between check-ins?

 Is a broken build a rare occurrence?

 Do you build and smoke test the software even when you're under pressure?

99. CHECKLIST: PROGRAMMING TOOLS

 Do you have an effective IDE?

 Does your IDE support outline view of your program; jumping to definitions of classes, routines, and

variables; source code formatting; brace matching or begin-end matching; multiple file string search

and replace; convenient compilation; and integrated debugging?

 Do you have tools that automate common refactorings?

 Are you using version control to manage source code, content, requirements, designs, project plans,

and other project artifacts?

 If you're working on a very large project, are you using a data dictionary or some other central

repository that contains authoritative descriptions of each class used in the system?

 Have you considered code libraries as alternatives to writing custom code, where available?

 Are you making use of an interactive debugger?

 Do you use make or other dependency-control software to build programs efficiently and reliably?

 Does your test environment include an automated test framework, automated test generators, coverage

monitors, system perturbers, diff tools, and defect tracking software?

 Have you created any custom tools that would help support your specific project's needs, especially

tools that automate repetitive tasks?

 Overall, does your environment benefit from adequate tool support?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 184

APPENDIX H

Design Review Rubric

This appendix describes the rating of design.

100. DOCUMENTATION

100.1. READABILITY RUBRIC

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Process There is a clear

process to guide

design requirements

and choices

There rules of

thumb, and senior

team members are

mature guides.

There is no process.

Members duplicate

previous projects

There is no process.

People make it up as

they go along

Follows guides /
process

Process & style

guidelines are

followed correctly.

Process & style

guidelines are

almost always

followed correctly.

Process & style

guidelines are not

followed. Style guide

may be inadequate.

Does not follow process

or does not match style

guide; style guide may

not exist.

Organization The documentation is

exceptionally well

organized

The documentation

is logically

organized.

The documentation is

poorly organized

The documentation is

disorganized

Readability The documentation is

very easy to follow,

understandable, is

clean, and has no

errors

The documentation

is easy to read.

Minor issues with

consistent naming,

or general

organization.

The documentation is

readable only by

someone who knows

what it is supposed to

be doing. At least one

major issue with

names, or

organization.

The documentation is

poorly organized and

very difficult to read.

Major problems with at

names and organization.

Diagrams Diagrams are clear

and help

understanding

Diagrams are

mostly clear and

do not sacrifice

understanding

Diagrams are mostly

confusing,

overwrought, or junk

No diagrams used

Naming All names follow

naming conventions,

are meaningful or

expressive, and

defined. Glossary is

complete.

Names are mostly

consistent in style

and expressive.

Isolated cases may

be overly terse or

ambiguous. No

glossary

Names are often

cryptic or overly

terse, ambiguous or

misleading. No

glossary.

Names are cryptic; items

may be referred to by

multiple different names

or phrases. No glossary

is given.

Table 44: Readability

rubric

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 185

100.2. ORGANIZATION AND CLARITY

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Documentation The documentation is

well written and

clearly explains what

the design is

accomplishing and

how, at an

appropriate level of

detail. All required

and most optional

elements are present

and follow the

prescribed format.

The documentation

is not compelling;

consists of

embedded

comment and some

simple header

documentation that

is somewhat useful

in understanding

the documentation.

All files,

procedures, and

structures are

given an overview

statement.

The documentation is

simply comments

embedded in the code

and pretty printed. Does

little to help the reader

understand the design.

No documentation.

Overview
statement

The overview is

given and explains

what the

documentation is

accomplishing.

The overview is

given but is

minimal and is

only somewhat

useful in

understanding the

documentation.

The overview is not

given or is not helpful

in understanding what

the documentation is to

accomplish.

No overview is given.

Top-Down
Design

Top-down design

method followed and

written in appropriate

detail.

Top-down method

followed, but level

of detail is too

vague or too exact.

Top-down design

method attempted, but

poorly executed.

No design.

Modularization &
Generalization

The description is

broken into well

thought out elements

that are of an

appropriate length,

scope and

independence.

Documentation

elements are

generally well

planned and

executed. Some

documentation is

repeated.

Individual

elements are often,

but not always,

written in a way

that invites reuse.

Documentation

elements are not well

thought out, are used in

a somewhat arbitrary

fashion, or do not

improve clarity.

Elements are seldom

written in a way that

invites reuse.

Reusability Individual elements

were developed in a

manner that actively

invites reuse in other

projects.

Most of the

documentation

could be reused in

other projects.

Some parts of the

documentation could be

reused in other projects.

The documentation is

not organized for

reusability.

Design &
Diagrams

A design tool or

diagram is correctly

used

A design or

diagram tool is

used but does not

entirely match text

A design or diagram

tool is used but is

incorrect.

No design or diagram

tool is used.

Identification All identifying

information is shown

in the documentation

Some identifying

information is

shown.

Only a small portion of

identifying information

is shown, and/or is not

correct.

No identifying

information is shown.

Table 45:

Documentation

organization and

clarity rubric

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 186

101. DESIGN

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Overall design The design is elegant,

complete system

The design lacks

some critical

design

components;

simpler than

comparable

products

The design lacks many

critical design

components, is not

simpler than

comparable products

The design is lacking

most or all design

components, or is

excessively complex

Understanding Shows thorough

understanding of the

mission, the

components,

underlying

techniques and

science

Shows moderate

understanding of

the mission, the

components,

underlying

techniques and

science

Shows minimal

understanding of the

mission, the

components, underlying

techniques and science

Can’t describe what

the design will do,

shows little knowledge

of why some

components are

employed or

understanding of what

they do

Design, &
Structure

The design proceeds

in a clear and logical

manner. Structures

are used correctly.

The most appropriate

algorithms are used.

The design is

mostly clear and

logical. Structures

are used correctly.

Reasonable

algorithms are

employed.

The design isn’t as clear

or logical as it should

be. Structures are

occasionally used

incorrectly. Portions are

clearly inefficient or

unnecessarily

complicated.

The design is sparse or

appears to be patched

together. Requires

significant effort to

comprehend.

Modularization &
Generalization

The design is broken

into well thought out

components that are

of an appropriate

scale, scope and

independence.

Components are

generally well

planned and

executed.

Individual

components are

often, but not

always, written in

a way that invites

reuse.

Components are not

well thought out, are

used in a somewhat

arbitrary fashion, or do

not improve clarity.

Elements are seldom

written in a way that

invites reuse.

Cohesion All the components

look like they belong

together.

Most of the

components look

like they belong

together.

Some of the

components look like

they belong together.

Few components look

like they belong

together.

Reusability Individual

components were

designed in a manner

that actively invites

reuse in other

projects.

Most of the

components could

be reused in other

projects.

Some parts of the

design could be reused

in other projects.

The design is not

organized for

reusability.

Efficiency The design is

extremely efficient,

using the best

approach in every

case.

The design is

efficient at

completing most

tasks

The design uses poorly

chosen approaches in at

least one place. For

example, the

documentation is brute

force

Many things in the

design could have

been accomplished in

an easier, faster, or

otherwise better

fashion.

Table 46:

Implementation rubric

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 187

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Correctness Prioritization

properly based on

Rate Monotonic

Analysis. Performs

error checking in all

cases. Appropriately

bounded time checks

are used in all cases.

Resources are

appropriately sized.

Has potential or

obvious deadlocks.

Some operations

do not use time

limits or use limits

that are

inappropriate.

Does not check for

error/lack of

resources in some

case. Has

prioritization,

based on ad hoc

experience, not on

analysis. Mutexes

correctly used.

Semaphores may

overflow, or not

wake task

Has obvious deadlocks.

Does not use time limits

on operations. Doesn't

check for error, or lack

of resources. Resource

sizing is not based on

analysis. Has

prioritization, based on

ad hoc experience, not

on analysis.

Semaphores or mutexes

misused.

Has obvious

deadlocks. Does not

use time limits to

operations. Doesn't

check for error/lack of

resources. Resource

sizing is not based on

analysis. No

prioritization, not

based on analysis

Problem
Prevention

Communication /

resource utilization

has effective (or best

in class) collision

avoidance algorithms

Communication /

resource utilization

has some collision

avoidance

algorithm(s), but it

is not always

effective (or best

in class)

Communication /

resource utilization has

poorly thought-out

collision avoidance

approach

Communication /

resource utilization has

no collision avoidance

algorithm

 Has fallback on

collision, reducing

further errors in all

cases

Has fallback on

collision, reducing

further errors in

most cases

Has fallback on

collision, but fails to

significantly reduces

collisions

Has no fallback on

collision

Safety Controls have been

identified from

analysis such as SIL

or FMEA. Device

handles

error/exception

circumstances

correctly. Device

engages safe

conditions in all

cases. Internal state

is monitored.

External sate is

monitored. Self-

checks are performed

correctly. Memory

and other internal

protection are

employed.

Internal state, such

as values and

Buffers are

checked. Output

monitoring is

employed. Self-

test is not

performed.

Some safe bounds are

used. Some value/range

checking is employed.

Some output monitoring

is employed.

No requirements, no

analysis, no action.

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 188

APPENDIX I

Code-Complete Code

Review Checklists

Source: https://github.com/janosgyerik/software-construction-notes/tree/master/checklists-all

102. CHECKLIST: EFFECTIVE INSPECTIONS

 Do you have checklists that focus reviewer attention on areas that have been problems in the past?

 Is the emphasis on defect detection rather than correction?

 Are inspectors given enough time to prepare before the inspection meeting, and is each one prepared?

 Does each participant have a distinct role to play?

 Does the meeting move at a productive rate?

 Is the meeting limited to two hours?

 Has the moderator received specific training in conducting inspections?

 Is data about error types collected at each inspection so that you can tailor future checklists to your

organization?

 Is data about preparation and inspection rates collected so that you can optimize future preparation and

inspections?

 Are the action items assigned at each inspection followed up, either personally by the moderator or

with a re-inspection?

 Does management understand that it should not attend inspection meetings?

103. CHECKLIST: HIGH-QUALITY ROUTINES

103.1. BIG-PICTURE ISSUES

 Is the reason for creating the routine sufficient?

 Have all parts of the routine that would benefit from being put into routines of their own been put into

routines of their own?

Adapted from

S T E V E N C .

M C C O N N E L L ,

C O D E C O M P L E T E ,

2 N D E D .

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is

Copyright (c) 1993-2004 Steven C. McConnell. Permission is hereby given to copy, adapt, and distribute

this material as long as this notice is included on all such materials and the materials are not sold,

licensed, or otherwise distributed for commercial gain.

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 189

 Is the routine's name a strong, clear verb-plus-object name for a procedure or a description of the

return value for a function?

 Does the routine's name describe everything the routine does?

 Have you established naming conventions for common operations?

 Does the routine have strong, functional cohesion – doing one and only one thing and doing it well?

 Do the routines have loose coupling – are the routine's connections to other routines small, intimate,

visible, and flexible?

 Is the length of the routine determined naturally by its function and logic, rather than by an artificial

coding standard?

103.2. PARAMETER-PASSING ISSUES

 Does the routine's parameter list, taken as a whole, present a consistent interface abstraction?

 Are the routine's parameters in a sensible order, including matching the order of parameters in similar

routines?

 Are interface assumptions documented?

 Does the routine have seven or fewer parameters?

 Is each input parameter used?

 Is each output parameter used?

 Does the routine avoid using input parameters as working variables?

 If the routine is a function, does it return a valid value under all possible circumstances?

104. CHECKLIST: DEFENSIVE PROGRAMMING

104.1. GENERAL

 Does the routine protect itself from bad input data?

 Have you used assertions to document assumptions, including preconditions and postconditions?

 Have assertions been used only to document conditions that should never occur?

 Does the architecture or high-level design specify a specific set of error handling techniques?

 Does the architecture or high-level design specify whether error handling should favor robustness or

correctness?

 Have barricades been created to contain the damaging effect of errors and reduce the amount of code

that has to be concerned about error processing?

 Have debugging aids been used in the code?

 Has information hiding been used to contain the effects of changes so that they won't affect code

outside the routine or class that is changed?

 Have debugging aids been installed in such a way that they can be activated or deactivated without a

great deal of fuss?

 Is the amount of defensive programming code appropriate – neither too much nor too little?

 Have you used offensive programming techniques to make errors difficult to overlook during

development?

104.2. EXCEPTIONS

 Has your project defined a standardized approach to exception handling?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 190

 Have you considered alternatives to using an exception?

 Is the error handled locally rather than throwing a non-local exception if possible?

 Does the code avoid throwing exceptions in constructors and destructors?

 Are all exceptions at the appropriate levels of abstraction for the routines that throw them?

 Does each exception include all relevant exception background information?

 Is the code free of empty catch blocks? (Or if an empty catch block truly is appropriate, is it

documented?)

104.3. SECURITY ISSUES

 Does the code that checks for bad input data check for attempted buffer overflows, SQL injection,

html injection, integer overflows, and other malicious inputs?

 Are all error-return codes checked?

 Are all exceptions caught?

 Do error messages avoid providing information that would help an attacker break into the system?

105. CHECKLIST: GENERAL CONSIDERATIONS IN USING DATA

105.1. INITIALIZING VARIABLES

 Does each routine check input parameters for validity?

 Does the code declare variables close to where they're first used?

 Does the code initialize variables as they're declared, if possible?

 Does the code initialize variables close to where they're first used, if it isn't possible to declare and

initialize them at the same time?

 Are counters and accumulators initialized properly and, if necessary, reinitialized each time they are

used?

 Are variables reinitialized properly in code that's executed repeatedly?

 Does the code compile with no warnings from the compiler?

 If your language uses implicit declarations, have you compensated for the problems they cause?

105.2. OTHER GENERAL ISSUES IN USING DATA

 Do all variables have the smallest scope possible?

 Are references to variables as close together as possible – both from each reference to a variable to the

next and in total live time?

 Do control structures correspond to the data types?

 Are all the declared variables being used?

 Are all variables bound at appropriate times, that is, striking a conscious balance between the

flexibility of late binding and the increased complexity associated with late binding?

 Does each variable have one and only one purpose?

 Is each variable's meaning explicit, with no hidden meanings?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 191

106. CHECKLIST: NAMING VARIABLES

106.1. GENERAL NAMING CONSIDERATIONS

 Does the name fully and accurately describe what the variable represents?

 Does the name refer to the real-world problem rather than to the programming-language solution?

 Is the name long enough that you don't have to puzzle it out?

 Are computed-value qualifiers, if any, at the end of the name?

 Does the name use Count or Index instead of Num? Naming Specific Kinds Of Data

 Are loop index names meaningful (something other than i, j, or k if the loop is more than one or two

lines long or is nested)?

 Have all “temporary” variables been renamed to something more meaningful?

 Are boolean variables named so that their meanings when they're True are clear?

 Do enumerated-type names include a prefix or suffix that indicates the category – for example, Color

for Color Red, Color Green, Color Blue, and so on?

 Are named constants named for the abstract entities they represent rather than the numbers they refer

to?

106.2. NAMING CONVENTIONS

 Does the convention distinguish among local, class, and global data?

 Does the convention distinguish among type names, named constants, enumerated types, and

variables?

 Does the convention identify input-only parameters to routines in languages that don't enforce them?

 Is the convention as compatible as possible with standard conventions for the language?

 Are names formatted for readability? Short Names

 Does the code use long names (unless it's necessary to use short ones)?

 Does the code avoid abbreviations that save only one character?

 Are all words abbreviated consistently?

 Are the names pronounceable?

 Are names that could be mispronounced avoided?

 Are short names documented in translation tables?

106.3. COMMON NAMING PROBLEMS: HAVE YOU AVOIDED...

 ...names that are misleading?

 ...names with similar meanings?

 ...names that are different by only one or two characters?

 ...names that sound similar?

 ...names that use numerals?

 ...names intentionally misspelled to make them shorter?

 ...names that are commonly misspelled in English?

 ...names that conflict with standard library-routine names or with predefined variable names?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 192

 ...totally arbitrary names?

 ...hard-to-read characters?

107. CHECKLIST: FUNDAMENTAL DATA

107.1. NUMBERS IN GENERAL

 Does the code avoid magic numbers?

 Does the code anticipate divide-by-zero errors?

 Are type conversions obvious?

 If variables with two different types are used in the same expression, will the expression be evaluated

as you intend it to be?

 Does the code avoid mixed-type comparisons?

 Does the program compile with no warnings?

107.2. INTEGERS

 Do expressions that use integer division work the way they're meant to?

 Do integer expressions avoid integer-overflow problems?

107.3. FLOATING-POINT NUMBERS

 Does the code avoid additions and subtractions on numbers with greatly different magnitudes?

 Does the code systematically prevent rounding errors?

 Does the code avoid comparing floating-point numbers for equality?

107.4. CHARACTERS AND STRINGS

 Does the code avoid magic characters and strings?

 Are references to strings free of off-by-one errors?

 Does C code treat string pointers and character arrays differently?

 Does C code follow the convention of declaring strings to be length constant+1?

 Does C code use arrays of characters rather than pointers, when appropriate?

 Does C code initialize strings to NULLs to avoid endless strings?

 Does C code use strncpy() rather than strcpy()? And strncat() and strncmp()?

107.5. BOOLEAN VARIABLES

 Does the program use additional boolean variables to document conditional tests?

 Does the program use additional boolean variables to simplify conditional tests?

107.6. ENUMERATED TYPES

 Does the program use enumerated types instead of named constants for their improved readability,

reliability, and modifiability?

 Does the program use enumerated types instead of boolean variables when a variable's use cannot be

completely captured with TRUE and FALSE?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 193

 Do tests using enumerated types test for invalid values?

 Is the first entry in an enumerated type reserved for “invalid”?

 Named Constants

 Does the program use named constants for data declarations and loop limits rather than magic

numbers?

 Have named constants been used consistently – not named constants in some places, literals in others?

107.7. ARRAYS

 Are all array indexes within the bounds of the array?

 Are array references free of off-by-one errors?

 Are all subscripts on multidimensional arrays in the correct order?

 In nested loops, is the correct variable used as the array subscript, avoiding loop-index cross talk?

107.8. CREATING TYPES

 Does the program use a different type for each kind of data that might change?

 Are type names oriented toward the real-world entities the types represent rather than toward

programming language types?

 Are the type names descriptive enough to help document data declarations?

 Have you avoided redefining predefined types?

 Have you considered creating a new class rather than simply redefining a type?

108. CHECKLIST: CONSIDERATIONS IN USING UNUSUAL DATA TYPES

108.1. STRUCTURES

 Have you used structures instead of naked variables to organize and manipulate groups of related

data?

 Have you considered creating a class as an alternative to using a structure?

108.2. GLOBAL DATA

 Are all variables local or class-scope unless they absolutely need to be global?

 Do variable naming conventions differentiate among local, class, and global data?

 Are all global variables documented?

 Is the code free of pseudo-global data-mammoth objects containing a mishmash of data that's passed

to every routine?

 Are access routines used instead of global data?

 Are access routines and data organized into classes?

 Do access routines provide a level of abstraction beyond the underlying data-type implementations?

 Are all related access routines at the same level of abstraction?

108.3. POINTERS

 Are pointer operations isolated in routines?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 194

 Are pointer references valid, or could the pointer be dangling?

 Does the code check pointers for validity before using them?

 Is the variable that the pointer references checked for validity before it's used?

 Are pointers set to NULL after they're freed?

 Does the code use all the pointer variables needed for the sake of readability?

 Are pointers in linked lists freed in the right order?

 Does the program allocate a reserve parachute of memory so that it can shut down gracefully if it runs

out of memory?

 Are pointers used only as a last resort, when no other method is available?

109. CHECKLIST: ORGANIZING STRAIGHT LINE CODE

 Does the code make dependencies among statements obvious?

 Do the names of routines make dependencies obvious?

 Do parameters to routines make dependencies obvious?

 Do comments describe any dependencies that would otherwise be unclear?

 Have housekeeping variables been used to check for sequential dependencies in critical sections of

code?

 Does the code read from top to bottom?

 Are related statements grouped together?

 Have relatively independent groups of statements been moved into their own routines?

110. CHECKLIST: CONDITIONALS

110.1. IF-THEN STATEMENTS

 Is the nominal path through the code clear?

 Do if-then tests branch correctly on equality?

 Is the else clause present and documented?

 Is the else clause correct?

 Are the if and else clauses used correctly – not reversed?

 Does the normal case follow the if rather than the else?

 if-then-else-if Chains

 Are complicated tests encapsulated in boolean function calls?

 Are the most common cases tested first?

 Are all cases covered?

 Is the if-then-else-if chain the best implementation – better than a case statement?

 case Statements

 Are cases ordered meaningfully?

 Are the actions for each case simple-calling other routines if necessary?

 Does the case statement test a real variable, not a phony one that's made up solely to use and abuse the

case statement?

 Is the use of the default clause legitimate?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 195

 Is the default clause used to detect and report unexpected cases?

 In C, C++, or Java, does the end of each case have a break?

111. CHECKLIST: LOOPS

111.1. LOOP SELECTION AND CREATION

 Is a while loop used instead of a for loop, if appropriate?

 Was the loop created from the inside out?

111.2. ENTERING THE LOOP

 Is the loop entered from the top?

 Is initialization code directly before the loop?

 If the loop is an infinite loop or an event loop, is it constructed cleanly rather than using a kludge such

as for i = 1 to 9999?

 If the loop is a C++, C, or Java for loop, is the loop header reserved for loop-control code?

111.3. INSIDE THE LOOP

 Does the loop use { and } or their equivalent to prevent problems arising from improper

modifications?

 Does the loop body have something in it? Is it nonempty?

 Are housekeeping chores grouped, at either the beginning or the end of the loop?

 Does the loop perform one and only one function – as a well-defined routine does?

 Is the loop short enough to view all at once?

 Is the loop nested to three levels or less?

 Have long loop contents been moved into their own routine?

 If the loop is long, is it especially clear?

111.4. LOOP INDEXES

 If the loop is a for loop, does the code inside it avoid monkeying with the loop index?

 Is a variable used to save important loop-index values rather than using the loop index outside the

loop?

 Is the loop index an ordinal type or an enumerated type – not floating point?

 Does the loop index have a meaningful name?

 Does the loop avoid index cross talk?

111.5. EXITING THE LOOP

 Does the loop end under all possible conditions?

 Does the loop use safety counters – if you've instituted a safety-counter standard?

 Is the loop's termination condition obvious?

 If break or continue are used, are they correct?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 196

112. CHECKLIST: UNUSUAL CONTROL STRUCTURES

112.1. RETURN

 Does each routine use return only when necessary?

 Do returns enhance readability?

112.2. RECURSION

 Does the recursive routine include code to stop the recursion?

 Does the routine use a safety counter to guarantee that the routine stops?

 Is recursion limited to one routine?

 Is the routine's depth of recursion within the limits imposed by the size of the program's stack?

 Is recursion the best way to implement the routine? Is it better than simple iteration?

112.3. GOTO

 Are gotos used only as a last resort, and then only to make code more readable and maintainable?

 If a goto is used for the sake of efficiency, has the gain in efficiency been measured and documented?

 Are gotos limited to one label per routine?

 Do all gotos go forward, not backward?

 Are all goto labels used?

113. CHECKLIST: TABLE DRIVEN METHODS

 Have you considered table-driven methods as an alternative to complicated logic?

 Have you considered table-driven methods as an alternative to complicated inheritance structures?

 Have you considered storing the table's data externally and reading it at run time so that the data can

be modified without changing code?

 If the table cannot be accessed directly via a straightforward array index (as in the Age example), have

your put the access-key calculation into a routine rather than duplicating the index calculation in the

code?

114. CHECKLIST: CONTROL STRUCTURE ISSUES

 Do expressions use True and False rather than 1 and 0?

 Are boolean values compared to True and False implicitly?

 Are numeric values compared to their test values explicitly?

 Have expressions been simplified by the addition of new boolean variables and the use of boolean

functions and decision tables?

 Are boolean expressions stated positively?

 Do pairs of braces balance?

 Are braces used everywhere they're needed for clarity?

 Are logical expressions fully parenthesized?

 Have tests been written in number-line order?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 197

 Do Java tests uses a.equals(b) style instead of a == b when appropriate?

 Are null statements obvious?

 Have nested statements been simplified by retesting part of the conditional, converting to if-then-else

or case statements, moving nested code into its own routine, converting to a more object-oriented

design, or improved in some other way?

 If a routine has a decision count of more than 10, is there a good reason for not redesigning it?

115. REFACTORING

115.1. REASONS TO REFACTOR

 Code is duplicated

 A routine is too long

 A loop is too long or too deeply nested

 A class has poor cohesion

 A class interface does not provide a consistent level of abstraction

 A parameter list has too many parameters

 Changes within a class tend to be compartmentalized

 Changes require parallel modifications to multiple classes

 Inheritance hierarchies have to be modified in parallel

 Related data items that are used together are not organized into classes

 A routine uses more features of another class than of its own class

 A primitive data type is overloaded

 A class doesn't do very much

 A chain of routines passes tramp data

 A middle man object isn't doing anything

 One class is overly intimate with another

 A routine has a poor name

 Data members are public

 A subclass uses only a small percentage of its parents' routines

 Comments are used to explain difficult code

 Global variables are used

 A routine uses setup code before a routine call or takedown code after a routine call

 A program contains code that seems like it might be needed someday

115.2. DATA LEVEL REFACTORINGS

 Replace a magic number with a named constant

 Rename a variable with a clearer or more informative name

 Move an expression inline

 Replace an expression with a routine

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 198

 Introduce an intermediate variable

 Convert a multi-use variable to a multiple single-use variables

 Use a local variable for local purposes rather than a parameter

 Convert a data primitive to a class

 Convert a set of type codes to a class

 Convert a set of type codes to a class with subclasses

 Change an array to an object

 Encapsulate a collection

 Replace a traditional record with a data class

115.3. STATEMENT LEVEL REFACTORINGS

 Decompose a boolean expression

 Move a complex boolean expression into a well-named boolean function

 Consolidate fragments that are duplicated within different parts of a conditional

 Use break or return instead of a loop control variable

 Return as soon as you know the answer instead of assigning a return value within nested if-then-else

statements

 Replace conditionals with polymorphism (especially repeated case statements)

 Create and use null objects instead of testing for null values

 Routine Level Refactorings

 Extract a routine

 Move a routine's code inline

 Convert a long routine to a class

 Substitute a simple algorithm for a complex algorithm

 Add a parameter

 Remove a parameter

 Separate query operations from modification operations

 Combine similar routines by parameterizing them

 Separate routines whose behavior depends on parameters passed in

 Pass a whole object rather than specific fields

 Pass specific fields rather than a whole object

 Encapsulate downcasting

115.4. CLASS IMPLEMENTATION REFACTORINGS

 Change value objects to reference objects

 Change reference objects to value objects

 Replace virtual routines with data initialization

 Change member routine or data placement

 Extract specialized code into a subclass

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 199

 Combine similar code into a superclass

115.5. CLASS INTERFACE REFACTORINGS

 Move a routine to another class

 Convert one class to two

 Eliminate a class

 Hide a delegate

 Replace inheritance with delegation

 Replace delegation with inheritance

 Remove a middle man

 Introduce a foreign routine

 Introduce a class extension

 Encapsulate an exposed member variable

 Remove Set() routines for fields that cannot be changed

 Hide routines that are not intended to be used outside the class

 Encapsulate unused routines

 Collapse a superclass and subclass if their implementations are very similar

115.6. SYSTEM LEVEL REFACTORINGS

 Duplicate data you can't control

 Change unidirectional class association to bidirectional class association

 Change bidirectional class association to unidirectional class association

 Provide a factory routine rather than a simple constructor

 Replace error codes with exceptions or vice versa

115.7. CHECKLIST: REFACTORING SAFELY

 Is each change part of a systematic change strategy?

 Did you save the code you started with before beginning refactoring?

 Are you keeping each refactoring small?

 Are you doing refactorings one at a time?

 Have you made a list of steps you intend to take during your refactoring?

 Do you have a parking lot so that you can remember ideas that occur to you mid-refactoring?

 Have you retested after each refactoring?

 Have changes been reviewed if they are complicated or if they affect mission-critical code?

 Have you considered the riskiness of the specific refactoring, and adjusted your approach

accordingly?

 Does the change enhance the program's internal quality rather than degrading it?

 Have you avoided using refactoring as a cover for code and fix or as an excuse for not rewriting bad

code?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 200

116. CHECKLIST: CODE-TUNING TECHNIQUES

116.1. IMPROVE BOTH SPEED AND SIZE

 Substitute table lookups for complicated logic

 Jam loops

 Use integer instead of floating-point variables

 Initialize data at compile time

 Use constants of the correct type

 Precompute results

 Eliminate common subexpressions

 Translate key routines to assembler

116.2. IMPROVE SPEED ONLY

 Stop testing when you know the answer

 Order tests in case statements and if-then-else chains by frequency

 Compare performance of similar logic structures

 Use lazy evaluation

 Unswitch loops that contain if tests

 Unroll loops

 Minimize work performed inside loops

 Use sentinels in search loops

 Put the busiest loop on the inside of nested loops

 Reduce the strength of operations performed inside loops

 Change multiple-dimension arrays to a single dimension

 Minimize array references

 Augment data types with indexes

 Cache frequently used values

 Exploit algebraic identities

 Reduce strength in logical and mathematical expressions

 Be wary of system routines

 Rewrite routines in line

117. CHECKLIST: LAYOUT

117.1. GENERAL

 Is formatting done primarily to illuminate the logical structure of the code?

 Can the formatting scheme be used consistently?

 Does the formatting scheme result in code that's easy to maintain?

 Does the formatting scheme improve code readability?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 201

117.2. CONTROL STRUCTURES

 Does the code avoid doubly indented begin-end or {} pairs?

 Are sequential blocks separated from each other with blank lines?

 Are complicated expressions formatted for readability?

 Are single-statement blocks formatted consistently?

 Are case statements formatted in a way that's consistent with the formatting of other control

structures?

 Have gotos been formatted in a way that makes their use obvious?

117.3. INDIVIDUAL STATEMENTS

 Is white space used to make logical expressions, array references, and routine arguments readable?

 Do incomplete statements end the line in a way that's obviously incorrect?

 Are continuation lines indented the standard indentation amount?

 Does each line contain at most one statement?

 Is each statement written without side effects?

 Is there at most one data declaration per line?

117.4. COMMENTS

 Are the comments indented the same number of spaces as the code they comment?

 Is the commenting style easy to maintain?

117.5. ROUTINES

 Are the arguments to each routine formatted so that each argument is easy to read, modify, and

comment?

 Are blank lines used to separate parts of a routine?

117.6. CLASSES, FILES AND PROGRAMS

 Is there a one-to-one relationship between classes and files for most classes and files?

 If a file does contain multiple classes, are all the routines in each class grouped together and is the

class clearly identified?

 Are routines within a file clearly separated with blank lines?

 In lieu of a stronger organizing principle, are all routines in alphabetical sequence?

118. CHECKLIST: GOOD COMMENTING TECHNIQUE

118.1. GENERAL

 Can someone pick up the code and immediately start to understand it?

 Do comments explain the code's intent or summarize what the code does, rather than just repeating the

code?

 Is the Pseudocode Programming Process used to reduce commenting time?

 Has tricky code been rewritten rather than commented?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 202

 Are comments up to date?

 Are comments clear and correct?

 Does the commenting style allow comments to be easily modified?

118.2. STATEMENTS AND PARAGRAPHS

 Does the code avoid endline comments?

 Do comments focus on why rather than how?

 Do comments prepare the reader for the code to follow?

 Does every comment count? Have redundant, extraneous, and self-indulgent comments been removed

or improved?

 Are surprises documented?

 Have abbreviations been avoided?

 Is the distinction between major and minor comments clear?

 Is code that works around an error or undocumented feature commented?

118.3. DATA DECLARATIONS

 Are units on data declarations commented?

 Are the ranges of values on numeric data commented?

 Are coded meanings commented?

 Are limitations on input data commented?

 Are flags documented to the bit level?

 Has each global variable been commented where it is declared?

 Has each global variable been identified as such at each usage, by a naming convention, a comment,

or both?

 Are magic numbers replaced with named constants or variables rather than just documented?

118.4. CONTROL STRUCTURES

 Is each control statement commented?

 Are the ends of long or complex control structures commented or, when possible, simplified so that

they don't need comments?

118.5. ROUTINES

 Is the purpose of each routine commented?

 Are other facts about each routine given in comments, when relevant, including input and output data,

interface assumptions, limitations, error corrections, global effects, and sources of algorithms?

118.6. FILES, CLASSES, AND PROGRAMS

 Does the program have a short document such as that described in the Book Paradigm that gives an

overall view of how the program is organized?

 Is the purpose of each file described?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 203

 Are the author's name, email address, and phone number in the listing?

119. CHECKLIST: SELF-DOCUMENTING CODE

119.1. CLASSES

 Does the class's interface present a consistent abstraction?

 Is the class well named, and does its name describe its central purpose?

 Does the class's interface make obvious how you should use the class?

 Is the class's interface abstract enough that you don't have to think about how its services are

implemented?

 Can you treat the class as a black box?

119.2. ROUTINES

 Does each routine's name describe exactly what the routine does?

 Does each routine perform one well-defined task?

 Have all parts of each routine that would benefit from being put into their own routines been put into

their own routines?

 Is each routine's interface obvious and clear?

119.3. DATA NAMES

 Are type names descriptive enough to help document data declarations?

 Are variables named well?

 Are variables used only for the purpose for which they're named?

 Are loop counters given more informative names than i, j, and k?

 Are well-named enumerated types used instead of makeshift flags or boolean variables?

 Are named constants used instead of magic numbers or magic strings?

 Do naming conventions distinguish among type names, enumerated types, named constants, local

variables, class variables, and global variables?

119.4. DATA ORGANIZATION

 Are extra variables used for clarity when needed?

 Are references to variables close together?

 Are data types simple so that they minimize complexity?

 Is complicated data accessed through abstract access routines (abstract data types)?

119.5. CONTROL

 Is the nominal path through the code clear?

 Are related statements grouped together?

 Have relatively independent groups of statements been packaged into their own routines?

 Does the normal case follow the if rather than the else?

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 204

 Are control structures simple so that they minimize complexity?

 Does each loop perform one and only one function, as a well-defined routine would?

 Is nesting minimized?

 Have boolean expressions been simplified by using additional boolean variables, boolean functions,

and decision tables?

119.6. LAYOUT

 Does the program's layout show its logical structure?

119.7. DESIGN

 Is the code straightforward, and does it avoid cleverness?

 Are implementation details hidden as much as possible?

 Is the program written in terms of the problem domain as much as possible rather than in terms of

computer-science or programming-language structures?

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 205

APPENDIX J

Code Review Rubric

This appendix describes the rating of source code workmanship.

Note: This was inspired by numerous sources including the First Lego League Coaches

Handlbook, and school grading rubrics.

120. SOFTWARE READABILITY RUBRIC

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Coding Style Coding style is

checked at code

reviews; automated

tools are used to

ensure consistent

formatting; audits

 Program manager has

ensured that the

development team has

followed a set of

coding standards

No check that software

team has and is

following coding

standards

Consistency Coding style

guidelines are

followed correctly.

Coding style

guidelines are

almost always

followed correctly.

Coding style

guidelines are not

followed. Style guide

may be inadequate.

Does not match style

guide; style guide may

not exist.

Organization The code is

exceptionally well

organized

The code is

logically

organized.

The code is poorly

organized

The code is disorganized

Readability The code is clean,

very easy to follow,

understandable, is

easy to maintain, and

has no errors.

The code is easy to

read. Minor issues

with consistent

indentation, use of

whitespace,

variable naming,

or general

organization.

The code is readable

only by someone who

knows what it is

supposed to be doing.

At least one major

issue with indentation,

whitespace, variable

names, or

organization.

The code is poorly

organized and very

difficult to read. Major

problems with at three or

four of the readability

subcategories.

Indentation /

white spaces

Indentation and

whitespace follow

coding style and is

not distracting.

Minor issues with

consistent

indentation, use of

whitespace.

At least one major

issue with indentation,

whitespace.

The code is poorly

organized and very

difficult to read.

Naming All names follow

naming conventions,

are meaningful or

expressive without

being verbose, and

documented. Data

dictionary is

complete.

Names are mostly

consistent in style

and expressive.

Isolated cases may

be verbose, overly

terse or

ambiguous. No

data dictionary

Names are

occasionally verbose,

but often are cryptic

or overly terse,

ambiguous or

misleading. No data

dictionary.

Variable names are

cryptic, and no data

dictionary is shown.

Table 47: Readability

rubric

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 206

121. SOFTWARE COMMENTS & DOCUMENTATION

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Comments Code is well-

commented.

One or two places

that could benefit

from comments are

missing them or

the code is overly

commented.

File header missing,

lack of comments or

meaningful comments.

No file header or

comments present.

Initial

Comments

Initial comments are

complete. Internal

documentation is

complete and well

suited to the program

Initial comments

are complete but

internal

documentation is

in some small

fashion inadequate.

Initial comments are

incomplete or internal

documentation is

inadequate.

No internal

documentation

Coding

Comments

Every line is

commented.

Comments clarify

meaning.

Many comments

are present, in

correct format.

Comments usually

clarity meaning.

Unhelpful

comments may

exist.

Some comments exist

but are frequently

unhelpful or

occasionally

misleading; may use an

incorrect format.

Complicated lines or

sections of code

uncommented or

lacking meaningful

comments. Comments

do not help the reader

understand the code.

No comments

Documentation The documentation is

well written and

clearly explains what

the code is

accomplishing and

how, at an

appropriate level of

detail. All required

and most optional

elements are present

and follow the

prescribed format.

The documentation

is not compelling;

consists of cod

comments and

simple header

documentation that

is somewhat useful

in understanding

the code. All files,

procedures, and

structures are given

an overview

statement.

The documentation is

simply comments

embedded in the code

with some header

comments separating

routines. Does little to

help the reader

understand the

implementation.

No documentation.

There might be

comments embedded

in the code with some

simple header

comments separating

routines. Does not help

the reader understand

the implementation.

Overview

statement

The overview is

given and explains

what the code is

accomplishing.

The overview is

given but is

minimal and is

only somewhat

useful in

understanding the

code.

The overview is not

given or is not helpful

in understanding what

the code is to

accomplish.

No overview is given.

Top-Down

Design

Top-down design

method followed and

written in appropriate

detail.

Top-down method

followed, but level

of detail is too

vague or too exact.

Top-down design

method attempted, but

poorly executed.

No design.

Design &

Diagrams

A design tool or

diagram is correctly

used

A design or

diagram tool is

used but does not

entirely match

code

A design or diagram

tool is used but is

incorrect.

No design or diagram

tool is used.

Table 48: Comments

and documentation

rubric

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 207

Identification All identifying

information is shown

in the documentation

Some identifying

information is

shown.

Only a small portion of

identifying information

is shown, and/or is not

correct.

No identifying

information is shown.

122. IMPLEMENTATION

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Syntax/runtime

/logic errors

The program

contains no errors.

The program has

no major errors.

Program executes but

has errors.

Program does not

execute.

Modularization

&

Generalization

Program is broken

into well thought out

elements that are of

an appropriate length,

scope and

independence.

Code elements are

generally well

planned and

executed. Some

code is repeated

that should be

encapsulated.

Individual

elements are often,

but not always,

written in a way

that invites code

reuse.

Code elements are not

well thought out, are

used in a somewhat

arbitrary fashion, or do

not improve program

clarity. Elements are

seldom written in a way

that invites code reuse.

Reusability Individual elements

were developed in a

manner that actively

invites reuse in other

projects.

Most of the

routines could be

reused in other

programs.

Some parts of the code

could be reused in other

programs.

The code is not

organized for

reusability.

Design, &

Structure

Program is designed

in a clear and logical

manner. Control

structures are used

correctly. The most

appropriate

algorithms are used,

in a manner that does

not sacrifice

readability or

understanding

Program is mostly

clear and logical.

Control structures

are used correctly.

Reasonable

algorithms are

implemented, in a

manner that does

not sacrifice

readability or

understanding

Program isn’t as clear

or logical as it should

be. Control structures

are occasionally used

incorrectly. Steps that

are clearly inefficient or

unnecessarily long are

used.

The code is huge and

appears to be patched

together. Requires

significant effort to

comprehend.

Emulation has a whole system

emulation

can emulate

significant parts,

individually

in concept could

emulate

no emulation

Efficiency The code is

extremely efficient,

using the best

approach in every

case.

The code is

efficient at

completing most

tasks

Code uses poorly

chosen approaches in at

least one place. For

example, the code is

brute force

Many things in the

code could have been

accomplished in an

easier, faster, or

otherwise better

fashion.

Consistency Program behaves in a

consistent,

predictable fashion,

even for complex

tasks

Mostly predictable Somewhat

unpredictable

unpredictable

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Table 49:

Implementation rubric

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 208

Operating

bounds

The code and design

have been reviewed

by independent

experts for arithmetic

issues. Appropriate

analysis tools have

been used. A sizable

body of test cases

and tests has been

applied against the

code.

The code and

design have been

reviewed by

independent

experts for

resource arithmetic

issues.

The Designer has

ensured that the

implementation is not

vulnerable to arithmetic

issues.

No one has checked

for arithmetic issues

 The code and design

have been reviewed

by independent

experts for buffer

overflow issues.

Appropriate analysis

tools have been used.

A sizable body of test

cases and tests has

been applied against

the code.

The code and

design have been

reviewed by

independent

experts for buffer

overflow issues.

The Designer has

ensured that the

implementation is not

vulnerable to buffer

overflow issues.

No one has checked

for overflow issues

 The code and design

have been reviewed

by independent

experts for resource

exhaustion.

Appropriate analysis

tools have been used.

A sizable body of test

cases and tests has

been applied against

the code.

The code and

design have been

reviewed by

independent

experts for

resource

exhaustion issues.

The Designer has

ensured that the

implementation is not

vulnerable to resource

exhaustion issues.

No one has checked

for overflow issues

 The code and design

have been reviewed

by independent

experts for race

conditions.

Appropriate analysis

tools have been used.

A sizable body of test

cases and tests has

been applied against

the code.

The code and

design have been

reviewed by

independent

experts for race

conditions

The Designer has

ensured that the

implementation is not

vulnerable to race

conditions.

No one has checked

for race conditions

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 209

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Correctness Prioritization

properly based on

Rate Monotonic

Analysis. Performs

error checking in all

cases. Appropriately

bounded time checks

are used in all cases.

Resources are

appropriately sized.

Has potential or

obvious deadlocks.

Some operations

do not use time

limits or uses

limits that are too

long. Does not

check for error /

lack of resources

in some case. Has

prioritization,

based on ad hoc

experience, not on

analysis. Mutexes

correctly used.

Semaphores may

overflow, or not

wake task

Has obvious deadlocks.

Does not use time limits

on operations. Doesn't

check for error, or lack

of resources. Resource

sizing is not based on

analysis. Has

prioritization, based on

ad hoc experience, not

on analysis.

Semaphores or mutexes

misused.

Has obvious

deadlocks. Does not

use time limits to

operations. Doesn't

check for error/lack of

resources. Resource

sizing is not based on

analysis. No

prioritization, not

based on analysis

Problem

Prevention

Communication /

resource utilization

has effective (or best

in class) collision

avoidance algorithms

Communication /

resource utilization

has some collision

avoidance

algorithm(s), but it

is not always

effective (or best

in class)

Communication /

resource utilization has

poorly thought-out

collision avoidance

approach

Communication /

resource utilization has

no collision avoidance

algorithm

 Has fallback on

collision, reducing

further errors in all

cases

Has fallback on

collision, reducing

further errors in

most cases

Has fallback on

collision, but fails to

significantly reduces

collisions

Has no fallback on

collision

Safety Controls have been

identified from

analysis such as SIL

or FMEA. Device

handles error /

exception

circumstances

correctly. Device

engages safe

conditions in all

cases. Internal state

is monitored.

External sate is

monitored. Self-

checks are performed

correctly. Memory

and other internal

protection are

employed.

Internal state, such

as values and

Buffers are

checked. Output

monitoring is

employed. Self-

test is not

performed.

Some safe bounds are

used. Some value/range

checking is employed.

Some output monitoring

is employed.

No requirements, no

analysis, no action.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 210

123. ERROR HANDLING

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Robustness Program handles

erroneous or

unexpected input

gracefully; action is

taken without

surprises

All obvious error

conditions are

checked for and

appropriate action

is taken.

Some, but not sufficient

portion of, obvious

error conditions are

checked for with an

appropriate action is

taken.

Many obvious error

conditions are not

checked. Or, if

checked, appropriate

action is not taken.

PID Control Is stable and free of

oscillation (low and

high frequency) for

all manner of

conditions and

disturbances

Is stable and free

of oscillation for

most conditions

and disturbances;

may have some

high-pitch whine

or oscillation for

boundary

conditions

Is occasionally

approximately correct,

frequently has

oscillation or is easily

disturbed

Has high oscillation,

high degree of error.

Testing Testing is complete

without being

redundant. All

boundary cases are

considered and

tested.

All key items are

tested, but testing

may be redundant.

Nearly all

boundary cases are

considered and

tested.

Testing was done but is

not sufficiently

complete. Most

boundary cases are

considered and tested.

Testing has not been

done

124. BEHAVIOUR

Trait Exceptional Acceptable Unsatisfactory Needs improvement

Analysis of

comm and IPC

network

Full structural

analysis of all

software systems as a

network.

Structural analysis

of only IPC, or

communication

section.

structural analysis of

one unit software

no structural analysis

Communication

overload

Handles overload in a

graceful fashion, with

predicable / defined

behaviour, including

honoring time

bounds, priority order

of responses to

messages, and

dropping messages &

disabling services.

Thrashes on

overload.

Inefficient slow

responses

Communication fails;

does not hold safe state;

is not responsive;

crashes or sends

erroneous behaviour.

Runs out of resources.

Critical behaviours are

missed.

crashes on overload

Interrupt /

Event overload

Handles overload in a

graceful fashion, with

predicable / defined

behaviour, including

honoring time

bounds, priority order

of responses and

dropping messages &

disabling services.

Thrashes on

overload.

Inefficient slow

responses

Communication fails;

does not hold safe state;

is not responsive;

crashes or sends

erroneous behaviour.

Runs out of resources.

Critical behaviours are

missed.

crashes on overload

Table 50: Error

handling rubric

Table 51: Behaviour

rubric

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 211

APPENDIX K

ARM Cortex-M

Specifics

This appendix provides detailed technical tips specific to ARM Cortex-M processors, that is

too low-level for a detailed design document. Instead, this type of information would go into

technical notes and the software implementation “doxygen.”

125. MICROCONTROLLER SPECIFIC DETAILED DESIGN ELEMENTS

This section covers design features specific to Cortex-M based microcontrollers.

125.1. ATOMICITY

On the Cortex-M processors, loads and stores are atomic only if:

 It is an 8-bit transaction, or

 It is a 16-bit transaction to an address aligned 16-bits, or

 It is a 32-bit transaction to an address aligned 32-bits

Normally the compiler takes care of this of this alignment. The exceptions – which will void

the atomics – are if

 a compiler option has been used to change padding or alignment

 The variable was specified with an address

 The structs are “packed” or otherwise had their alignment changed.

This means that volatiles are not read or written atomically on the Cortex-M unless all of the

conditions mentioned are followed. Compare and swap techniques or disabling interrupts

must be used when modifying memory shared with an interrupt routine

125.2. MEMORY BARRIERS

Memory barriers are a necessary mechanism to force the commit of memory access before

next step. Specifically, it ensures that data has been moved from any cache / buffer to the

destination, and blocks execution until that has been done.

 Some instruction cores have write buffers – the Cortex-M0 does not.

 The microcontroller may have a system level cache (outside of instruction engine)

 There may be queue or buffer between the processor and the memory mapped

peripheral (esp. external peripherals attached to the memory bus). Note: the memory

region often should also be marked as non-cacheable.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 212

 There may be a queue or buffer between the processor and the event bus.

Memory barriers should be employed

 Before wait for event/interrupt (sleep)

 In the construction of IPC mechanisms, e.g. mutexes and semaphores

The barrier CMSIS wrappers are:

_DAB()
_DSB()
_ISB()

125.3. A NOTE ON ARM CORTEX-M0 PROCESSORS

The ARM Cortex-M0 instruction core cannot do:

 Compare and swap (LDREX/STREX)

 Atomic writes or increments

 Bit-banding

 Detecting that debugger is attached

The techniques below are still (largely) applicable but will have Cortex-M0 specific

adaptations.

125.4. HARDWARE EXCEPTIONS

Exceptions, and faults, are a type of error detected by the processor at run-time. By supplying

the appropriate handling procedure, the software can signal an error condition. The handlers

can preserve the call stack, key register values, and key global variables. This may be helpful

for identifying what was going on.

125.5. DIGITAL INPUTS AND OUTPUTS

The majority of microcontrollers have “Input Data Registers” and “Output Data registers” per

port. Save the data register, and the masks (for the relevant ones to access), and possibly any

index substitution index from internal reference to the data register and pin.

No microcontroller I’ve seen has more than 32 pins per port; most keep to 16 or fewer.

125.6. BITBAND

Cortex-M3 and above processors have bit-banding. This can be leveraged for simplifying IO.

It can create a pointer to a single IO pin. For instance, for the chip select on I2C or SPI

communication. (Assuming that the hardware peripheral doesn’t already handle the chip

select).

125.7. PROCEDURE BLIP

One useful technique is to have procedures raise a digital output line when they enter and

lower it when they exit. This can be used to:

 Validate that key procedures execute when stimulated

 Measure the duration of interrupt or other procedure

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 213

 Check that procedures execution timing holds, even under load or high events

 To demonstrate the regularity of procedure execution

 To demonstrate regularity of events, such as CPU timers, and interrupt servicing.

The design is simple. Create a variable for each potential procedure of interest, defined like

so:

uint32_t volatile* XYZ_blip= &XYZ_null;

In side of each procedure – called XYZ_procedure() here – have the following template:

void XYZ_procedure()
{
 XYZ_blip[0] = 1;

 … do work ….

 XYZ_blip[0] = 0;
}

When the procedure it will set the value at the destination of the pointer to 1, and when it exit

it will set the value at the destination of the pointer to 0. The probe effect is minimal: the

procedure executes the same code no matter what XYZ_blip points to. Both steps take only an

instruction or two; there are no conditions, branches or other variations.

To cause the procedure to blip a digital output pin:

1. Ensure that the GPIO is configured to be an output

2. Set XYZ_blip to point to the bitband address for the pins bit in the digital output register

of the target port.

Note: multiple procedures can drive the same output pin.

The disable the procedure blip:

1. Set XYZ_blip to point to XYZ_null. This way the procedure only stores to a dummy

variable.

The execution time of the procedure is the same whether or not the probe is enabled, and the

overhead is negligible.

Note: as stated above, Cortex-M0 based (and non-Cortex) processors do not have banding.

The above technique can be adapted in a straightforward manner to those processors.

125.8. FIND-FIRST SET BIT

Finding the first set bit in O(1) time is an important utility procedure. It is used to find, for

example, the highest queued item in a bit list. Cortex-M3 and above include a “count left

zeros” instruction which will tell one the highest bit set in a 32-bit word:

highest bit set = 32- clz(x)

However, the usual convention is that bit 0 is the highest priority and bit 32 is the lowest.

This convention allows working with longer bit queues by using a hierarchy. To find the right

most bit set, one could (but should not do):

FFS(x) = 32- clz(x&(-x))

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 214

This takes several instructions. Finding the highest priority is often performed in a time

critical procedure, such as PendSV exception handler to switch tasks. The next option is to

employ the ARM “reverse bits” instruction:

arm_clz(arm_rbit(xx))

gcc:

__builtin_clz(__builtin_bswap32(x))

This is better, but still 1 instruction slower than need be.

The fix is to reverse the bits when they are set in the mask:

mask |= 0x80000000uL >>idx;

On the ARM that takes the same number of instructions as:

mask |= 1uL << idx;

125.9. INTERRUPT PRIORITIZATION

The ARM Cortex-M microcontrollers have a prioritizable interrupt controller. Many

processors can have as few as four levels of prioritization. Others can have a great range of

prioritization. The diagram gives some idea of how higher interrupts & exceptions can

interrupt lower ones.

ISR

Hard Fault

Thread(s) Thread(s)

SysTickSysTick

PendSV

ISR

The Hard fault exception (and other similar faults, such as NMI, etc.) is at the highest priority,

and is fixed in the hardware. Interrupts cannot occur within these handlers. If this is invoked,

the software (and/or hardware) has failed. The software design should place the hardware in

safe state but take no complex actions.

PendSV is an exception at the lowest priority, in that it is invoked infrequently – only when a

thread, timer (in systick), and other IPC object in the interrupt changes the CPU’s ready-to run

list.

The System Tick is an exception that occurs regularly. It is (in this design guide) at a priority

lower than all of the interrupts. This is done to service the interrupts with lower latency,

preserving the quality of their function. It is the same priority (or higher than) PendSV’s

priority. If it were at a priority lower than PendSV, the regular switching of tasks would be a

much higher cost.

The low priority of the system tick handler serves an integrity role: this is how interrupt

overload is detected. A watchdog timer – such as the windowed watchdog timer on the

STM32 product family – will be serviced (or partly serviced) in the system tick routine. If the

system tick routine can’t execute regularly either because of interrupt overload, or someone

having disabled interrupts for too long, the watchdog servicing will be inhibited, triggering

the microcontroller to reset, and proceed to the fail-safe state.

Figure 41: Prioritized

interrupts and

exceptions

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 215

Note: by partially serviced can mean that the watchdog timer in question can only by reset if

the system tick has hand-shaked with some other thread. By requiring all the parties to

handshake (or other demonstration of liveliness) the watchdog timer can detect failure to

service those parties in a timely fashion.

126. REFERENCES AND RESOURCES

ARM, DDI0403, “ARM v7-M Architecture Reference Manual,” Rev E.b, 2014-Dec

ARM, DDI0406, “ARM Architecture Reference Manual, ARM v7-A and ARM v7-R edition”

Rev C.c, 2014-May

ARM, DDI0419, “ARMv6-M Architecture Reference Manual,” Rev D 2017-May

ARM, DDI 0432C, “Cortex-M0: Technical Reference Manual” r0p0 Rev C 2009 Nov 30

ARM, DDI 0439B, “Cortex-M4: Technical Reference Manual,” Rev r0p0 2009-2010

ARM, DUI 0497A “Cortex-M0 Devices: Generic User Guide” Rev A 2009 Oct 8

ARM, QRC0011, “ARMv6-M Instruction Set Quick Reference Guide,” Rev L 2007 March

Keil, “Using Cortex-M3 and Cortex-M4 Fault Exceptions,” Application Note 209. 2010

CMSIS “Cortex Microcontroller Software Interface Standard,” Version: 1.10 - 24. 2009 Feb

Doulos, “Getting started with CMSIS” 2009

126.1. MEMORY PROTECTION

Atmel, “AT02346: Using the MPU on Atmel Cortex-M3 / Cortex-M4 based

Microcontrollers,” 2013

ST Micro, DocID029037, “AN4838 Managing memory protection unit (MPU) in STM32

MCUs”, Rev 1, 2016 Mar

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 216

APPENDIX L

Hardware Firmware

Integration Tests

127. TESTS

This appendix offers basic tests of the software units, starting with the most fundamental

units. The tests are intended to check that the software module function as expected. Note:

many of these tests require external stimulation or instrumentation; these tests are not

intended to be in the “Test” build configuration.

 Basic input or outputs

 Time based behaviour

 Basic function of the module

 Signal processing qualities

 and can be employed as a hardware test:

 Signals stuck. e.g. stuck high or stuck low

 Signals shorted together

 Signals that are open

The digital input tests:

 Test 1: Test CPU input with a line high

 Test 2: Test CPU input with a line low

The digital output tests include:

 Test 3: Test CPU output with a line high

 Test 4: Test CPU output with a line low

The analog input tests include:

 Test 5: Test CPU input with a line high

 Test 6: Test CPU input with a line midrange

 Test 7: Test CPU input with a line low

This analog output tests include:

 Test 8: Test CPU output with a line high

 Test 9: Test CPU output with a line midrange

 Test 10: Test CPU output with a line low

“This application has

requested the

Runtime to terminate

it in an unusual way.”

– An actual Microsoft

error message

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 217

This polynomial correction tests include:

 Test 11: Test CPU input with a line high

 Test 12: Test CPU input with a line midrange

 Test 13: Test CPU input with a line low

This IIR signal processing tests include:

 Test 14: Inject a stable signal

 Test 15: Inject a signal with a fast-rising pulse

 Test 16: Inject a signal with a fast-rising step

 Test 17: Inject a signal with a fast-descending pulse

 Test 18: Inject a signal with a fast-descending step

This debounce module tests include:

 Test 19: Check that a rising edge is passed thru

 Test 20: Check that a falling edge is passed thru

 Test 21: Check that rising-edge bounces are rejected

 Test 22: Check that falling-edge bounces are rejected

127.1. TEST 1: TEST CPU INPUT WITH A LINE HIGH

The basic test is:

1. Set the input high to the pin, using an external tool

2. Read the digital input (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

127.2. TEST 2: TEST CPU INPUT WITH A LINE LOW

The basic test is:

1. Set the input low to the pin, using an external tool

2. Read the digital input (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

It integrates several elements together that are, in other approaches, separate documentation

efforts. The testing is often separate, later pass. This is included here for several reasons.

Control flow errors: how did it get to the wrong spot? Bug in control flow implementation?

Individual values right, but altogether not right. Wrong implementation of control flow.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 218

127.3. TEST 3: TEST CPU OUTPUT WITH A LINE HIGH

The basic test is:

1. With the diagnostic tool, have the software set the output high

2. Using an external tool, read the digital pin. Confirm that it is high.

Stretch: This should be done with all output lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

software problem, or a hardware short.

127.4. TEST 4: TEST CPU OUTPUT WITH A LINE LOW

The basic test is:

1. With the diagnostic tool, have the software set the output low

2. Using an external tool, read the digital pin. Confirm that it is low.

Stretch: This should be done with all output lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

software problem, or a hardware short.

127.5. TEST 5: TEST CPU INPUT WITH A LINE HIGH

The basic test is:

1. Set the input high to the pin, using an external tool

2. Read the analog input (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

127.6. TEST 6: TEST CPU INPUT WITH A LINE MIDGRANGE

The basic test is:

1. Set the input to the mid range value, using an external tool

2. Read the analog input (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become low unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

127.7. TEST 7: TEST CPU INPUT WITH A LINE LOW

The basic test is:

1. Set the input low to the pin, using an external tool

2. Read the analog input (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 219

127.8. TEST 8: TEST CPU OUTPUT WITH A LINE HIGH

The basic test is:

1. Set the output high to the pin, using an external tool

2. Read the analog output (using external tool).

Stretch: This should be done with all output lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

software problem, or a hardware short.

127.9. TEST 9: TEST CPU OUTPUT WITH A LINE MIDRANGE

The basic test is:

1. Set the output midrange to the pin, using an external tool

2. Read the analog output (using an external tool).

Stretch: This should be done with all output lines. All lines should be read to check that their

states are at the commanded level, ± a range. If a line is in the wrong state, this may indicate

a software problem, or a hardware short.

127.10. TEST 10: TEST CPU OUTPUT WITH A LINE LOW

The basic test is:

1. Set the output low to the pin, using an external tool

2. Read the analog output (using an external tool).

Stretch: This should be done with all output lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

software problem, or a hardware short.

127.11. TEST 11: TEST CPU INPUT WITH A LINE HIGH

The basic test is:

1. Set the input high to the pin, using an external tool

2. Read the conversion results (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

127.12. TEST 12: TEST CPU INPUT WITH A LINE MIDGRANGE

The basic test is:

1. Set the input low to the mid range value, using an external tool

2. Read the conversion results (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become low unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 220

127.13. TEST 13: TEST CPU INPUT WITH A LINE LOW

The basic test is:

1. Set the input low to the pin, using an external tool

2. Read the conversion results (using diagnostic tool).

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

127.14. TEST 14: INJECT A STABLE SIGNAL

The basic test is:

1. Route the filter output to an analog output test point.

2. Using an external tool, set the input to the pin to a known, stable voltage

3. Read the filter results (using diagnostic tool). The reported voltage should match the

injected voltage, after the input divider.

4. Check that the output signal is stable (i.e. no self-induced noise)

Stretch: This should be done with all input lines. All lines should be read to check that their

states do not become high unexpectedly. If a line is in the wrong state, this may indicate a

hardware short.

127.15. TEST 15: INJECT A SIGNAL WITH A FAST RISING PULSE

The basic test is:

1. Route the filter output to an analog output test point.

2. Using an external tool, set the input to the pin to a known, stable voltage

3. Read the filter results (using diagnostic tool). The reported voltage should match the

injected voltage, after the input divider.

4. Check that the output signal is stable (i.e. no self-induced noise)

5. Inject a fast-rising pulse, returning to the prior level

6. Read the filter results (using diagnostic tool). The reported voltage should match the

prior injected voltage, after the input divider.

7. Check that the output signal is stable (i.e. no self-induced noise as a response), and

that blip negligible pass thru.

Stretch: This should be done with all input lines. All lines should be read to check that their

states did not have an unexpected pulse. If a line did have a pulse, this may indicate a

coupling or error with the filter implementation.

127.16. TEST 16: INJECT A SIGNAL WITH A FAST RISING STEP

The basic test is:

1. Route the filter output to an analog output test point.

2. Using an external tool, set the input to the pin to a known, stable voltage

3. Read the filter results (using diagnostic tool). The reported voltage should match the

injected voltage, after the input divider.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 221

4. Check that the output signal is stable (i.e. no self-induced noise)

5. Inject a fast-rising step to a higher voltage level

6. Read the filter results (using diagnostic tool). Within TBD msecs, the reported

voltage should match the new injected voltage, after the input divider.

7. Check that the output signal is stable (i.e. no self-induced noise as a response), and

that blip negligible pass thru.

Stretch: This should be done with all input lines. All lines should be read to check that their

states did not have an unexpected pulse. If a line did have a pulse, this may indicate a

coupling or error with the filter implementation.

127.17. TEST 17: INJECT A SIGNAL WITH A FAST DESCENDING PULSE

The basic test is:

1. Route the filter output to an analog output test point.

2. Using an external tool, set the input to the pin to a known, stable voltage

3. Read the filter results (using diagnostic tool). The reported voltage should match the

injected voltage, after the input divider.

4. Check that the output signal is stable (i.e. no self-induced noise)

5. Inject a fast-descending pulse, returning to the prior level

6. Read the filter results (using diagnostic tool). The reported voltage should match the

prior injected voltage, after the input divider.

7. Check that the output signal is stable (i.e. no self-induced noise as a response), and

that blip negligible pass thru.

Stretch: This should be done with all input lines. All lines should be read to check that their

states did not have an unexpected pulse. If a line did have a pulse, this may indicate a

coupling or error with the filter implementation.

127.18. TEST 18: INJECT A SIGNAL WITH A FAST DESCENDING STEP

The basic test is:

1. Route the filter output to an analog output test point.

2. Using an external tool, set the input to the pin to a known, stable voltage

3. Read the filter results (using diagnostic tool). The reported voltage should match the

injected voltage, after the input divider.

4. Check that the output signal is stable (i.e. no self-induced noise)

5. Inject a fast-descending step to a lower voltage level

6. Read the filter results (using diagnostic tool). Within TBD msecs, the reported

voltage should match the new injected voltage, after the input divider.

7. Check that the output signal is stable (i.e. no self-induced noise as a response), and

that blip negligible pass thru.

Stretch: This should be done with all input lines. All lines should be read to check that their

states did not have an unexpected pulse. If a line did have a pulse, this may indicate a

coupling or error with the filter implementation.

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 222

127.19. TEST 19: CHECK THAT RISING EDGE IS PASSED

The basic test is:

1. Set the input signal low

2. Check that the output signal is low

3. Set the input signal high

4. Check that the output signal is high within TBD ms.

127.20. TEST 20: CHECK THAT FALLINGING EDGE IS PASSED

The basic test is:

1. Set the input signal high

2. Wait TBD ms

3. Check that the output signal is high

4. Set the input signal low

5. Check that the output signal is low within TBD ms.

127.21. TEST 21: CHECK THAT RISING-EDGE BOUNCES ARE REJECTED

The basic test is:

1. Set the input signal low

2. Check that the output signal is low

3. Set the input signal high

4. Check that the output signal is high within TBD ms.

5. Set the input signal low

6. Check that the output signal is high

7. Raise signal within TBD ms

8. Check that the output signal is high

127.22. TEST 22: CHECK THAT FALLING-EDGE BOUNCES ARE REJECTED

The basic test is:

1. Set the input signal high

2. Check that the output signal is high

3. Set the input signal low

4. Check that the output signal is low within TBD ms.

5. Set the input signal high

6. Check that the output signal is low

7. Set the input signal low within TBD ms

8. Check that the output signal is low

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 223

References &

Resources

Note: most references appear in the margins, significant references will appear at the end of

their respective chapter.

128. REFERENCE DOCUMENTATION AND RESOURCES

128.1. OVERALL SOFTWARE CRAFTSMANSHIP

McConnell, Steve “Code Complete” 2ed 2004

IEEE Computer Society, SWEBOK Guide to the Software Engineering Body of Knowledge,

version 3, 2014

IEEE Std 1044-2009 IEEE Standard Classification for Software Anomalies, IEEE-SA

Standards Board, 2009 Nov 9

128.2. SOFTWARE SAFETY

Joint Software Systems Safety Committee, “Software System Safety Handbook,” 2000-Dec

Joint Software Systems Safety Engineering Workgroup, “Joint Software Systems Safety

Engineering Handbook,” Rev 1 2010-Aug-27

While both cover much the same material – although the second has more material. I

prefer the style of the earlier edition.

MOD Defence Standard 0058 Requirements for Safety Related Software in Defence

Equipment. 1996 UK Ministry of Defence

MOD Interim Defence Standard 08-58 Issues 1: HAZOP Studies on Systems Containing

Programmable Electronics 1996 UK Ministry of Defence

SAE ARP 4761 Guidelines and methods for conducting the safety assessment process on

Civil Airborne Systems and Equipment. 1996 Society of Automotive Engineers.

UCRL-ID-122514, Lawrence, J Dennis “Software Safety Hazard Analysis” Rev 2, U.S.

Nuclear Regulatory Commission, 1995-October

128.3. OTHER

ISO/IEC/IEEE 60559:2011 “Information technology – Microprocessor Systems – Floating-

Point arithmetic”

Miktijuk et al, V.G. Mikitjuk, V.N. Yarmolik, A.J. van de Goor, RAM Testing Algorithm for

Detection Linked Coupling Faults, IEEE 1996

Q U A L I T Y S O F T W A R E D E S I G N · 2 0 2 5 . 0 6 . 2 3 224

“Optimally, what is needed is something that can be added to airplanes and other systems which weighs

nothing, yet is very costly, and violates none of the physical laws of the universe, such as the law of

gravitation or the laws of thermodynamic.

This might appear to be an insurmountable challenge; however, as a result of the traditional ingenuity

characteristic of system designers, it can be reported with confidence that such an ingredient has already

been found.

It is called software.”

– Norman Ralph Augustine, (1970s)

